PLANETARY RINGS RESEARCH: THE STEPHEN W. HAWKING CENTER FOR MICROGRAVITY RESEARCH AND EDUCATION

EXPERIMENTS THAT STUDY PLANETARY RINGS INCLUDE:

CODA

CODA (Collisions of Dust Aggregates) is a drop tower experiment in which cm-scale particles are launched at each other at low speeds to study the effects of different particle types on collision outcomes. CODA experiments are run inside a vacuum chamber that falls in our laboratory-scale drop tower facility which provides 0.7 s of free-fall. This enables lower impact velocities than what we can achieve with the table-top experiment…

ICE

Comets and small moons located in the outskirts of the Solar System are covered in a layer of regolith composed of dust and ice. Understanding the response of this regolith to impacts is crucial to the knowledge of the evolution of comets, as well as to future missions that will land on their surfaces. ICE (Impact into Cryogenic regolith Experiment) addresses the specific question of how the presence of water ice in dust influences the response to impacts…

TRACE

TRACE is a low velocity collision experiment designed to characterize and understand the collisional properties of specific materials in microgravity. TRACE uses the Drop Tower platform to obtain near zero gravity and simulates accretion by colliding aggregates made of regolith simulants. Collisions take place at varying speeds and aggregate strengths and are recorded on a high speed camera…

CATE

The Collisional Accretion Experiment (CATE) was designed to study the accretion of small particles onto a larger body in a vacuum, as well as in microgravity conditions. This experiment allows further insight into the particle interactions in proto-planetary disks and in planetary ring systems. A macroscopic target object is be released via a spring system on one end of an experiment tube and traverses a cloud of dust particles at a low speed…