
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20

Journal of Simulation

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjsm20

SpaceFOM - A robust standard for enabling a-
priori interoperability of HLA-based space systems
simulations

Edwin Z. Crues, Dan Dexter, Alberto Falcone, Alfredo Garro & Björn Möller

To cite this article: Edwin Z. Crues, Dan Dexter, Alberto Falcone, Alfredo Garro & Björn Möller
(2021): SpaceFOM - A robust standard for enabling a-priori interoperability of HLA-based space
systems simulations, Journal of Simulation, DOI: 10.1080/17477778.2021.1945962

To link to this article: https://doi.org/10.1080/17477778.2021.1945962

Published online: 03 Jul 2021.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjsm20
https://www.tandfonline.com/loi/tjsm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17477778.2021.1945962
https://doi.org/10.1080/17477778.2021.1945962
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjsm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17477778.2021.1945962
https://www.tandfonline.com/doi/mlt/10.1080/17477778.2021.1945962
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2021.1945962&domain=pdf&date_stamp=2021-07-03
http://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2021.1945962&domain=pdf&date_stamp=2021-07-03

SpaceFOM - A robust standard for enabling a-priori interoperability of HLA-
based space systems simulations
Edwin Z. Cruesa, Dan Dextera, Alberto Falcone b, Alfredo Garro b and Björn Möllerc

aSoftware, Robotics, and Simulation Division (ER), NASA Johnson Space Center, Houston, USA; bDepartment of Informatics, Modeling,
Electronics and Systems Engineering (DIMES), University of Calabria, Rende, Italy; cPitch Technologies, Linköping, Sweden

ABSTRACT
The development of modern space systems requires the collaboration among several national
and international space organisations. Along with this complexity and diversity come progres-
sively increasing challenges with managing the associated requirements, properties, emergent
behaviours, and integration risks. Collaborative and distributed simulation is one technology
being applied to address these challenges. A notable example of this is the well-established
standard for distributed simulation, the IEEE 1516-2010 – High Level Architecture (HLA). To
enable and ensure a-priori interoperability for complex space systems simulations and foster
international collaboration, the Simulation Interoperability Standards Organization (SISO)
formed a Product Development Group (PDG) to develop the Space Reference Federation
Object Model (SpaceFOM). This article presents the SpaceFOM standard describing the princi-
pal design elements that compose it along with a set of design patterns introduced to deal
with common issues in distributed simulation and to pursue extensibility, interoperability, and
robustness.

ARTICLE HISTORY
Received 2 March 2021
Accepted 14 June 2021

KEYWORDS
High Level Architecture;
Federation Object Model;
Interoperability; Simulation
Design Patterns; Space

1. Introduction

The space community relies heavily upon Modelling
and Simulation (M&S) to gain knowledge on critical
issues facing space exploration. Some of the critical
issues include: how to design equipment under uncer-
tain conditions; how to reproduce and evaluate dan-
gerous scenarios; and how to allocate limited
resources, not only in terms of money, among the
diverse projects.

To handle the increasing complexity of modern
space missions, the IEEE 1516 – High Level
Architecture (HLA) standard was defined to facilitate
the integration of distributed simulators within
a common environment (see, IEEE Std. 1516–2010
(2010)). HLA is increasingly used in the space com-
munity to design simulators that meet the require-
ments for simulation interoperability in the US,
Europe and to some extent in Asia. Until recently,
different organisations have developed their own
domain-dependent HLA Federation Object Model
(FOM) modules without taking into account long-
term cost for interoperability. Furthermore, for the
organisations involved in simulating a space mission,
it is not trivial to implement HLA simulators able to
interact with each other in a common HLA distributed
simulation. Indeed, although space agencies defined
specific FOM modules to simulate missions in space,
these are often used internally and are project-specific

failing in providing the adequate support for handling
general space mission scenarios (Chung et al., 2007;
Crues et al., 2003; DAmbrogio et al., 2020; Hasan et al.,
2008). As a consequence, the lack of a common FOM
module suitable for the space domain is one of the
main reasons that precludes a-priori interoperability
among HLA simulators. To maximise the benefits of
interoperability and minimise the integration effort
each time a new system is reused, a Product
Development Group (PDG), involving members
representing government, academia, and industry,
was activated in 2015 by the Simulation
Interoperability Standards Organization (SISO) with
the aim to provide a Space Reference Federation
Object Model (SpaceFOM) for international colla-
boration on space systems simulations. The
SpaceFOM standard offers a more efficient way to
combine and reuse systems and tools in new config-
urations including simulators executing in either real-
time or non-real-time. The main focus of the
SpaceFOM is on training, analysis, mission support
and engineering; although other types of usage, like
test and concept exploration, may also be supported to
some degree.

The SpaceFOM provides a well-structured process
for creating HLA-based Federates that allows to obtain
a-priori interoperability. Indeed, a-priori is a concept
that refers to everything that can be known indepen-
dently of experience, and therefore opposite to the

CONTACT Alfredo Garro alfredo.garro@unical.it Department of Informatics, Modeling, Electronics and Systems Engineering (DIMES) University of
Calabria, Via P. Bucci 41C, Rende 87036, Italy;

JOURNAL OF SIMULATION
https://doi.org/10.1080/17477778.2021.1945962

© Operational Research Society 2021.

http://orcid.org/0000-0002-2660-1432
http://orcid.org/0000-0003-0351-0869
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17477778.2021.1945962&domain=pdf&date_stamp=2021-07-02

concept of a-posteriori that indicates knowledge based
on empirical evidence derived from experience
(Williamson, 2013). In the context of a project invol-
ving several partners, referring to a common FOM
(established through an agreement) allows partners
to develop independently their simulators having
a reasonable certainty that these simulators will be
able to interoperate. In this sense, using the
SpaceFOM guarantees interoperability between HLA-
based Federates before integration tests, i.e., “a-priori”
interoperability.

This paper is organised as follows. Section 2 intro-
duces some related work to address interoperability
issues. Section 3 reports the SISO standardisation pro-
cess followed with reference to the SpaceFOM.
Section 4 presents the SpaceFOM standard. Section 5
delineates a set of design patterns, specifically designed
to solve common problems in adopting the presented
standard. Section 6 presents and discusses a typical
SpaceFOM-based Federation. Section 7 presents a set
of frameworks and tools that have been developed to
meet the SpaceFOM specifications along with experi-
ences gained from its adoption. Finally, Section 8
delineates conclusions and future work.

2. Related work

Interoperability represents, in highly complex and cri-
tical environments like the space, one of the greatest
challenges, and resolving this issue means allowing the
agencies involved to work together within and across
organisational boundaries on a common simulation
project. Several research efforts focused their attention
on interoperability issues, mainly aiming at develop-
ing standards, design patterns, and software solutions
for linking simulation models, even if heterogeneous
and geographically distributed (S. J. Taylor, 2019; Tu
et al., 2016).

In 1995 the US Department of Defence (DoD)
created a high-level, general-purpose architecture for
distributed computer simulation systems to facilitate
interoperability among all the US DoD simulators,
named High Level Architecture (HLA). In 2000,
HLA became an IEEE standard under the name IEEE
1516-2000 – HLA (see, IEEE Std. 1516–2010 (2010)).
In HLA, modularity with high cohesion and low cou-
pling of simulation models is the key factor that
enables the interoperability and reusability of models.
A distributed simulation in the HLA standard is
named Federation and is composed of many simula-
tion components, formally named Federates.
A Federate describes its capabilities through
a Simulation Object Model (SOM) file that contains
the information exchange requirements including
class relationships, objects, interactions, data type
representations, and other relevant data. The neces-
sary information to set up an HLA Federation and

carry out a simulation execution are collected into
a single file, called Federation Object Model (FOM),
starting from the participating Federates capabilities
(i.e., from their SOMs files). A FOM defines the struc-
ture of information such as objects, interactions, and
synchronisation points that can be exchanged among
Federates in a Federation Execution. During
a simulation, Federates can interact with each other
through the use of an indirect communication system,
called Run-Time Infrastructure (RTI), that provides
services for the management of the distributed
simulation.

After becoming an IEEE standard, HLA has
gained more and more interest and acceptance in
the scientific community, and now it is employed
not only for developing military simulators but also
aerospace, smart-grid, and transportation ones (see,
Albagli et al. (2016); Falcone and Garro (2019); J.-k
Lee et al. (2003)). When HLA was introduced to the
M&S community, most of the simulators were com-
pliant with the IEEE 1278 – Distributed Interactive
Simulation (DIS) (see, IEEE Std. 1278–1993 (1993))
standard. Thus, to facilitate the integration of the
already available simulators into HLA without costly
re-engineering of the simulation models, two
approaches have been adopted: the DIS-HLA
Gateway (see, Gminder (1996); Perry et al. (1998))
and the Realtime-Platform-Reference Federated
Object Model (RPR-FOM) standard (see, SISO-STD
-001-2015(2015)).

Even though the RPR-FOM standard permits to
link computer simulations of discrete physical entities
into virtual worlds and offers backwards compatibility
with simulations compliant with the Distributed
Interactive Simulation (DIS) standard, it does not
meet the space interoperability requirements. The rea-
sons are mainly related due to the following features:

Earth-centric Coordinate System – the RPR-FOM
makes the assumption that all positions shall be given
using an Earth-based geocentric coordinate system.
This way of specifying positions is implicit and cannot
be changed. In space simulation, different simulations
need to specify positions in coordinate systems related
to different bodies (e.g., Earth, Sun, and Mars). This
makes it computationally inconvenient and in many
cases, even impossible to use the RPR FOM.

No Time Management – the RPR-FOM uses a real-
time, best-effort approach to time management. HLA
time management is not used and a non-standard
time-stamping approach is used. This makes it diffi-
cult or impossible to build Federations that guarantee
consistency and repeatability.

Focused on Defence – the RPR-FOM offers an
extensive set of classes tailored for warfare simulation
but very few targeted at the Space domain.

Concerning the patterns and guidances, Pristupa
and Zmeyev in Pristupa and Zmeyev (2004) present

2 E. Z. CRUES ET AL.

a set of design patterns and their ability to give solu-
tions to typical design problems in discrete-event
simulations. In Gamma et al. (2001), the authors pre-
sent design patterns as a new mechanism for expres-
sing object-oriented design experience. They capture
the intent behind a design by identifying objects, rela-
tionships, and responsibilities. The authors also
delineate how to set up and organise the identified
design patterns through a catalogue. In Mller et al.
(2016), the authors delineate some design patterns
for the HLA Data Distribution Management (DDM)
and present their pros and cons as well as implemen-
tation and efficiency details. The authors define the so-
called Uniform DDM design pattern that makes it
easier to use DDM in simulations, since the attributes
of an HLA ObjectClass have the same DDM dimen-
sions available. Furthermore, design patterns for filter-
ing based on both static and dynamic properties have
been defined. Finally, the authors provide several best
practices for using them. Nutaro and Hammonds in
Nutaro and Hammonds (2004) present a design pat-
tern that supports the definition of simulators through
an extension of the Model/View/Control design pat-
tern. The defined Model/Simulator/View/Control pat-
tern incorporates key concepts from the Discrete Event
System Specification (DEVS) methodology to allow
a separation of modelling, simulation, and distributed
concepts. Lee et al. in T.-D. Lee et al. (2003) present
the Object-oriented Modelling and Simulation of
RISA (Real-time distributed System for Air defence)
that is focused on advanced software engineering
methods using design patterns to build robust soft-
ware architecture based on HLA.

Although considerable progress has been made in
the space domain, fundamental issues, such as those
involving the interoperability of simulation models are
still a topic of intense research activity.

In Li et al., (2007), authors highlighted how Space
system simulation involves different research fields,
such as space remote sensing, space communication,
navigation and positioning, and deep space explora-
tion. The authors propose a new schema of simulation
environment, where several mechanisms ensure that
the simulation environment is universal and reusable.
As also stated by the authors, space simulations have
some peculiar requirements that a space-specific FOM
needs to meet. It needs to be able to exchange data
about the physical space environment such as planets
and planetary bodies. It needs to be able to exchange
data about facilities and processes in the proximity of
different planets and planetary bodies or something
more remote. It needs to correctly handle scenario
time as well as the advancement of scenario time in
relationship to wall-clock time. Moreover, space simu-
lations may include lengthy missions, where running
faster than real-time execution is required.

To meet these requirements and overcome the dis-
cussed interoperability issues, the SISO-STD-018-
2020 – Space Reference Federation Object Model
(SpaceFOM) has been defined (see, SISO-STD-018-
2020(2020)). The next section presents the SISO stan-
dardisation process followed for the definition of the
SpaceFOM; whereas Section 4 provides an overview of
the SpaceFOM together with the offered
functionalities.

3. The SISO SpaceFOM standardisation
process

The SISO standardisation process consists of six
stages. With reference to Figure 1, the SpaceFOM
standardisation process started in April 2015 with
the Activity Approved stage, where the working
group applied for formal SISO approval to begin
work on the standard.

In the Product Development stage, after being
approved by the SISO Product Nomination (PN), the
SISO Standards Activity Committee (SAC) created in
September 2015 the so-called Product Development
Group (PDG) with the aim to create the SpaceFOM
standard. After that, SISO advertised the creation of
PDG within the SISO community to encourage the
participation of the members in the PDG activities.

After 3 years of active discussion, development,
testing, and review, the first draft version of the
SpaceFOM standard reached the Product Balloting
stage, where the PDG presented the status of the
SpaceFOM standard for approval. In this stage, SISO
can accept the standard for a ballot or send it back for
further work. If the standard is approved for balloting,
SISO issues a call to the community to join the ballot-
ing pool. Approval of the standard may take several
rounds of balloting and reviewing. The SpaceFOM
standard was approved for balloting in
November 2018, and it was voted by more than 75%
of the balloting group with more than 75% approval.

After the SpaceFOM has been successfully balloted
between spring and summer of 2019, it reached the
Product Approval stage. This stage started in
February 2020, where SISO verified whether the
SpaceFOM standard and its development followed the
SISO principles for inclusion as a SISO standard.
Specifically, the PDG group demonstrated, through
the produced documentation, that the standard satisfies
the PN, and that the product development process
employed satisfies the SISO principles. After SISO
review, the SpaceFOM standard was submitted for
final approval with product code SISO-STD-018-2020,
and the Product Support Group (PSG) was constituted.

In January 2021, the Interpretation, Distribution
and Configuration Management stage has been

JOURNAL OF SIMULATION 3

reached, where the PSG group has taken the respon-
sibility for the standard. The PSG aims to support
developers and users that decide to adopt the standard.

Finally, in the Periodic Review stage the PSG
reviews the SpaceFOM standard to ensure that it has
not become obsolete, redundant, or in conflict with
other products, and that it continues to meet SISO
requirements in terms of usefulness, relevance, and
quality.

4. SpaceFOM overview

The SpaceFOM standard delineates a prescriptive col-
lection of policies, processes, documented agreements,
and HLA constructs intended to provide a sound basis
for a-priori HLA-based interoperability for collabora-
tive distributed simulations in the space domain.

The SpaceFOM has been defined to meet the fol-
lowing main requirements for supporting the distrib-
uted simulation of space missions (SISO-STD-018-
2020, 2020):

● handling of specific roles and responsibilities of
federates within a federation execution;

● management of common data types useful in the
space domain;

● management of common time lines and time
scales needed for time homogeneity;

● dealing with specific time-stepped focused time
management approaches;

● handling of a flexible positioning system, using
reference frames for locating arbitrary bodies in
space;

● adopting of a naming convention for operational
reference frames;

● offering support for physical entities (e.g., space
vehicles and astronauts);

● offering support for physical interfaces (e.g.,
docking ports and sensor locations);

● handling a synchronised execution control strat-
egy and framework;

● providing rules for assessing the compliance with
the SpaceFOM;

● providing a core base set of FOM modules
needed for a SpaceFOM-compliant federation
execution.

The SpaceFOM identifies specific Federation
Execution management roles, a collection of compli-
ance rules, two document templates, and a set of base
HLA data constructs contained in a collection of
Federation Object Model modules (FOM modules).
The management roles define principal responsibil-
ities in coordinating a Federation Execution and pro-
viding critical data during initialisation and run-time.
The rules codify fundamental actions, relationships,
and behaviours required for functional interoperabil-
ity. The document templates provide and outline for
specifying a Federation wide agreement on the funda-
mental aspects defining a specific Federation
Execution and an outline for a document that each
Federate must provide defining their level of
SpaceFOM compliance. The SpaceFOM FOM mod-
ules define a collection of base data types, synchroni-
sation points, hierarchical ObjectClass definitions and
InteractionClass definitions that are organised accord-
ing to their purposes in separate modules (files). This
separation provides developers with a flexible and
effective means for managing and extending the stan-
dard (see, Möller et al. (2016)).

Figure 1. The SISO Standardisation process conducted for the SpaceFOM.

4 E. Z. CRUES ET AL.

4.1. Roles and responsibilities

While the concept of the Federation Object Model
(FOM) is contained in the name SpaceFOM, HLA-
based interoperability requires more than the data
elements contained in a collection of HLA-based
FOM modules. Specifically, in addition to the asso-
ciated FOM modules, the SpaceFOM defines principal
roles for a SpaceFOM-compliant Federation and these
roles have specified responsibilities. The SpaceFOM
defines three principal Federate roles:

Master – Responsible for high-level coordination of
any SpaceFOM-compliant Federation Execution. The
Master Federate supports the Federate role determina-
tion process, coordinates the Federation Execution
initialisation process, and manages the execution
moding process.

Pacing – Responsible for coordinating time man-
agement and synchronisation of a Federation
Execution. The Pacing Federate determines the rate
at which HLA logical time progresses with respect to
this Federate’s computer clock. In some cases, this
clock may be linked to Central Timing Equipment
(CTE) for hardware level synchronisation between
physically independent Federates and possibly avio-
nics systems.

Root Reference Frame Publisher (RRFP) –
Responsible for publishing the name of the root refer-
ence frame of the reference frame tree for the
Federation Execution. The RRFP Federate provides
the name of the root reference frame for the current
Federation Execution. This forms the common base or
root of the Federation Execution’s reference frame tree
(see, Möller et al. (2017); SISO-STD-018-2020(2020)).

Note that these roles are not mutually exclusive and
can coexist within a Federate. The function and
importance of these roles will become evident in the
discussions in Section 5.

4.2. Rules and guidelines

In addition to the roles and responsibilities defined
above, the SpaceFOM standard specifies 103

compliance rules and a few associated guidelines to
facilitate a-priori interoperability. These rules cover
topics associated with general HLA compliance, doc-
umentation, time management, reference frame spe-
cification, data specification, and execution control
(see, SISO-STD-018-2020(2020)).

4.3. Documentation

The SpaceFOM standard also provides two document
templates to assist Federation construction and inte-
gration: the Federation Execution Specific Federation
Agreement (FESFA) and the Federation Compliance
Document (FCD). The FESFA is a document that
represents a Federation-wide agreement between par-
ticipating Federates and pertains to a specific common
set of Federation Executions. In contrast to the FESFA,
which is a cross-federation agreement, the FCD
describes the capabilities of a specific Federate and
which roles it can play in a SpaceFOM-compliant
Federation Execution. Several rules in the SpaceFOM
put requirements on what data needs to be recorded in
the FESFA and what data needs to be recorded in the
FCDs.

4.4. FOM modules

Of course, the SpaceFOM also defines the base set of
HLA-compliant FOM modules. Figure 2 shows the five
FOM modules that constitute the SpaceFOM along with
the architecture and module dependencies. These mod-
ules are: SISO_SpaceFOM_switches, SISO_Space
FOM_datatypes, SISO_SpaceFOM_environment, SISO_
SpaceFOM_management, and SISO_SpaceFOM_entity.

The SpaceFOM modules, as all HLA FOMs, relies
on the Management and Initialisation Module (MIM)
that contains the Object Model Template (OMT) tables
that describe the Management Object Model (MOM),
which is used to control and monitor a federation
execution (see, Topçu and Oğuztüzün (2017)).

SISO_SpaceFOM_switches – It provides config-
uration settings for the Federation execution by way
of global Federation execution wide switches for

Figure 2. Architecture of the SISO SpaceFOM.

JOURNAL OF SIMULATION 5

Local Run-Time Component (LRC) and RTI beha-
viour. The IEEE 1516–2010 standard defines a set of
switches that shall be set in the FOM (see, IEEE Std.
1516–2010 (2010)). These switches regulate the beha-
viour of some of the optional actions the RTI can
perform on behalf of the Federate, such as automati-
cally requesting updates of an instance attribute
when an object instance is discovered or advising
the Federates when certain events occur. To facilitate
easy replacement of these settings, the switches have
been confined to the SISO_SpaceFOM_switches FOM
module. It is expected that Federations might choose
to update this module based on their Federation
agreement.

SISO_SpaceFOM_datatypes – This module provides
the definitions of fundamental data types used as a basis
for commonality between SpaceFOM-compliant
Federates. This includes three principal HLA data types:

simpleDataTypes - It contains representations for the
main scalar physical quantities, such as Angle, Mass,
MassRate, Velocity and Acceleration;

arrayDataTypes - It includes the definitions for mana-
ging vector physical quantities, such as position, velo-
city and acceleration;

fixed record Data Types - It contains representations
for the space-time coordinates and reference frame
states.

This FOM module also defines the HLA logical time-
stamp and lookahead time; both are represented as 64
bits integers, HLAinteger64Time. These data types are
used for object attributes as well as interaction para-
meters and adopt the International System of Units
(SI) wherever possible. In addition, this module
defines the SpaceTimeCoordinate ObjectClass that
provides the base information for representing when
and where any reference frame or physical entity
exists in time and space.

SISO_SpaceFOM_environment – This module provides
the fundamental data types used to represent the basic
physical environmental properties associated with
space-based simulations. In particular, it defines the
ReferenceFrame HLA ObjectClass that provides the
base information for associating reference frames and
forms the basis for coordinate and state transformations.

SISO_SpaceFOM_management – This module
offers the specifications for execution control and
management of HLA ObjectClass, InteractionClass
and SynchronizationPoint instances. Specifically, it
defines the base set of information necessary to coor-
dinate Federation and Federate execution time lines
and execution mode transitions in a SpaceFOM com-
pliant Federation Execution.

SISO_SpaceFOM_entity – This module provides the
basic state definitions of any physical object in a space
environment through the definition of the PhysicalEntity,
DynamicalEntity, and PhysicalInterface ObjectClasses.

A PhysicalEntity is the fundamental base class that pro-
vide state information for any item physically present in
the Federation Execution. A DynamicalEntity inherits
from PhysicalEntity and can be used to represent a man-
made vehicle or a major sub-element of a man-made
vehicle. A PhysicalInterface is used to create geometric
associations between a PhysicalEntity or another
PhysicalInterface.

4.5. A-priori interoperability, robustness, and
extensibility

Fundamentally, the purpose of the SpaceFOM standard
is to provide a codified process for creating HLA-based
Federates that can reasonably be expected to work
together without significant additional negotiation
and integration. This is the concept of a-priori inter-
operability for space systems simulations. In addition
to this, the SpaceFOM is intended to provide for robust
execution of the constituent Federates and provide for
extension through a common set of base capabilities
and data types. Robustness and extensibility are two
important aspects of the SpaceFOM standard since, on
one hand, it has been defined to be robust even in the
presence of unexpected inputs and behaviour of the
simulation models, and on the other hand, it provides
mechanisms to extend the offered functionalities to
meet specific requirements of a specific space mission
or even a campaign of space missions. Extensions can
be through the definition of new functionalities or
through modification of existing ones without impair-
ing the existing functions, roles, and constraints.
Finally, through its robustness and making use of
base extension, the SpaceFOM offers mechanisms to
detect failing Federate and Federation Executions,
allowing the operator to take action.

The next section reports a set of design patterns,
introduced during the SpaceFOM definition process,
to enable or contribute directly to the extensibility,
interoperability, and robustness of the standard.

5. Interoperability solutions using design
patterns

In software engineering, design patterns are general
repeatable solutions to common problems in software
design (see, Gamma et al. (2001)). A pattern does not
represent a finished design that can be translated
directly into code, but is a template for addressing
a specific design problem.

During the SpaceFOM standardisation process,
several domain-independent and domain-specific
design patterns have been introduced to deal with
design, development, coordination, and execution
challenges of complex systems. Although they have
been conceived with reference to the typical issues of
the distributed simulation of space missions and

6 E. Z. CRUES ET AL.

systems, it is worth noting that the applicability of the
introduced design patters (especially the domain-
independent ones) can be exploitable as reference
solutions for addressing general distribute simulation
issues (e.g., synchronisation, coordination and time
management) in different application domains.

The design patterns used in the SpaceFOM are typi-
cally associated with the specific SpaceFOM roles of
Master, Pacing, and Root Reference Frame Publisher
Federates (see Subsection 4.1) and can be segregated
into the functional areas of Execution Control, Time
Management, and Spacial Definition. For instance, the
Master role controls initialisation and execution of the
Federation; the Pacing role managed the advancement of
scenario time in relationship to real-time; and the Root
Reference Frame Publisher role defines the foundational
reference frame for a Federation Execution’s reference
frame tree.

Many of the SpaceFOM patterns rely on both HLA
synchronisation points and HLA time management
services, which make it possible for Federates to man-
age simulation time, and pause and wait for all
Federates to complete their processing and proceed
to the next step in a fully synchronised way (see Möller
et al. (2017); SISO-STD-018-2020(2020)).

5.1. Execution control patterns

This section presents six design patterns used to
enable the initialisation and execution control pro-
cesses of the Federates in an associated Federation
Execution. These patterns are:

● Federation Execution orphan detection, creation,
and join;

● Centralised checking for required federates;
● Detection and designation of early and late join-

ing federates;
● Global configuration using a singleton instance;
● Synchronised multi-phase initialisation;
● Central execution control with transition

requests.

5.1.1. The federation execution orphan detection,
creation, and join pattern
Requirement: A SpaceFOM-compliant Federation
Execution must start with a new clean Federation
Execution.

Pattern: Assume a Federate Feda intends to join
a specific SpaceFOM-compliant Federation Execution
Fe. To ensure that Fe is not orphaned, Feda connects to
the RTI associated with Fe and immediately attempts to
destroy Fe. This will fail if Fe does not exist or if other
Federates are joined to an existing Fe. If this succeeds,
then Fe existed and there were no joined Federates; as
a result the orphaned Federation Execution Fe will be
destroyed. Then Feda attempts to create the Federation

Execution Fe. If this fails, then Fe must be a functioning
existing Federation Execution; if this succeeds, then Fe
will be created as a new functioning Federation
Execution. Regardless, Feda attempts to join Fe. If Fe
does not exist anymore because another Federate just
destroyed it in the short interval since Feda created it,
then Feda goes back to create it again. This continues
until Feda succeeds or decides to terminate. Figure 3
shows this associated activity flow.

Discussion: One of the very first steps in a successful
HLA Federation Execution is for a participating
Federate to create, if necessary, and join the
Federation Execution. However, when a Federation
is executed many times, there may be cases when the
execution is not terminated properly, leaving an
orphaned Federation Execution. In a orphaned
Federation Execution all participating Federates have
resigned, but it has not been destroyed. If a Federate
joins an orphaned Federation Execution, it may con-
tain orphaned object instances or may have been
advanced in HLA logical time. This design pattern is
used to manage the inconsistency risks derived from
an orphaned Federation Execution. Moreover, it
addresses the inherent race condition that exists
when multiple Federates try to concurrently join
a Federation Execution with the resulting potential
to destroy each other’s ones. This pattern relies on
the property that a Federation Execution cannot be
destroyed, once a Federate has successfully joined it.

5.1.2. The centralised checking of required
federates pattern
Requirement: A SpaceFOM-compliant Federation
Execution may require a set of Federates be present
before starting. The Federation Execution must wait
for all required Federates to join before proceeding
through initialisation.

Pattern: Since the Master Federate is responsible for
centralised execution and control, it has the responsibil-
ity to check for the presence of required Federates. To do
this, it maintains a list of the instance names of any
required Federates; these Federates are often specified
in an associated configuration file. The Master Federate
uses the HLA Management Object Model (MOM) ser-
vices to monitor which Federates have joined. Once all
required Federates have joined the Federation Execution,
the Master Federate registers the “Initialization Started”
synchronisation point with all the currently joined
Federates. Any Federate other than the Master Federate
will enter a loop waiting on the announcement of the
“Initialization Started” synchronisation point. The
announcement of the “Initialization Started” synchroni-
sation point signals that the currently joined Federate is
an early joining Federate (aka. early joiner) and can
proceed through the Master Federate coordinated early
joiner initialisation process. Figure 4 shows the asso-
ciated activity flows for the Master Federate and other

JOURNAL OF SIMULATION 7

Federates, respectively. This pattern is a prerequisite to
a following pattern for detecting early and late joining
Federates.

Discussion: This pattern relies on the ability of
a synchronisation point to act as a global flag. The
pattern does not require any particular start order
between the Master Federate and any required
Federates. The pattern ensures that all required
Federates proceed through the initialisation process
managed by the Master Federate and can participate
in a coordinated multi-phase initialisation.

5.1.3. The detection and designation of early and
late joining Federates pattern
Requirement: A SpaceFOM-compliant Federation
Execution must support Federates that can or have

to participate in the Master Federate coordinated initi-
alisation process (early joiner) and Federates that do
not need to participate in the Master Federate coordi-
nated initialisation process (late joiner).

Pattern: This design pattern builds on the pre-
viously described centralised checking of required fed-
erates pattern. In that pattern, the Master Federate
registers the “Initialization Started” synchronisation
point with all currently present Federates once all
required Federates are found. All Federates, other
than the Master Federate, will enter into a loop waiting
for the announcement of either the “Initialization
Started” or the “Initialization Completed” synchroni-
sation point.

If the “Initialization Started” synchronisation point
is detected, the Federate is designated an early joiner
and will proceed through the Master Federate coordi-
nated initialisation process. Once the coordinated
initialisation process is successfully completed, the
Master Federate and all early joiner Federates will
achieve the “Initialization Started” synchronisation
point. Then the Master Federate will register the
“Initialization Completed” synchronisation point.
This is a signal to all joined Federates that the coordi-
nated initialisation process is complete and the
Federation Execution can proceed to run-freeze-
shutdown mode.

Any Federate that is not a required Federate and
did not join prior to the last required Federate will not
receive the announcement of the “Initialization
Started” synchronisation point and will loop waiting
until it receives the announcement of the
“Initialization Completed” synchronisation point and
be designated a late joiner. (Figure 5) shows the activ-
ities performed by the Federate according to its type
(early or a late joiner).

Figure 3. Connect to a SpaceFOM-compliant federation
execution.

Figure 4. Check for required federates.

8 E. Z. CRUES ET AL.

Discussion: This pattern uses the ability of
a synchronisation point to act as a global flag. It is
worth noting that an early joiner Federate may not
perform any initialisation steps in sync with the other
Federates. Also, note that a late joiner Federate will be
checking for the “Initialization Completed” synchroni-
sation point and will spin waiting until the Master
Federate coordinate initialisation process is complete
and the synchronisation point is registered. Finally,
the “Initialization Completed” synchronisation point
is never achieved and acts as a persistent marker
throughout the remaining life of the Federation
Execution. Therefore, any Federate joining after initi-
alisation will immediately see the “Initialization
Completed” synchronisation point and know they are
a late joiner.

5.1.4. The global configuration using a singleton
instance pattern
Requirement: A SpaceFOM-compliant Federation
Execution must publish a single instance of an HLA
ObjectClass that defines shared global configuration
and control data. This singleton is of type
ExecutionConfiguration, is names ExCO, and is pub-
lished by the Master Federate.

Pattern: This pattern uses the uniqueness of named
HLA ObjectClass instances to ensure that a uniquely
identifiable set of configuration and control data is
published to a Federation Execution. A dedicated
Federate Feda in a Federation Execution Fe is assigned

the responsibility to register and publish a specific
HLA ObjectClass instance with a defined HLA object
instance name, i.e., ExCO. Feda provides attribute
value updates to ExCO. Other Federates in Fe get the
configuration data by subscribing to the specific HLA
ObjectClass and discovering the specific object
instance ExCO (see, Figure 6).

Discussion: For any SpaceFOM-compliant
Federation Execution, there are required configura-
tion parameters that cannot be derived and must be
shared with all participating Federates. In theory, this
configuration data could be set in a configuration file
for each Federate. However, that approach can lead to
both distribution and data consistency issues.
Furthermore, a SpaceFOM-compliant Federation
Execution also requires specific dynamic control data
and a shared configuration file is not a viable solution
for this.

To address both these issues of configuration and
control, the SpaceFOM defines a singleton HLA
ObjectClass instance of type ExecutionConfiguration
with object instance named ExCO. Since the Master
Federate has the responsibility for coordination and
control of a SpaceFOM-compliant Federation
Execution, it publishes the ExCO. The ExCO object
instance contains the necessary global configuration
parameters such as the epoch for the execution and the
root reference frame. It also provides Federation
Execution control data (e.g., current mode, next
mode, etc.).

Figure 5. Detect if a federate is an early or a late joiner.

JOURNAL OF SIMULATION 9

5.1.5. The synchronised multi-phase initialisation
pattern
Requirement: A SpaceFOM-compliant Federation
Execution must provide for an initialisation process
that supports deterministic data exchange between
participating Federates for the determination and/or
computation of dependent parameters or states.

Pattern: This pattern relies on a defined series of
data exchanges between participating Federates. To
control and verify that all data has been provided,
the Federation performs a set of predefined initiali-
sation phases that are known in advance. Each phase
defines a specific synchronisation point. In the
example depicted in (Figure 7), two phases named
Phase A and Phase B are defined. A dedicated
Federate, in this case the one that plays the Master
role, registers these synchronisation points. Then, it
achieves them one at a time. After achieving
a synchronisation point, it waits for the Federation
to synchronise before achieving the next one. The
other participating Federates perform the following
three steps: (i) send out their initialisation data; (iii)
achieve the specific synchronisation point; and, (iii)
wait for the Federation to synchronise.

Discussion: This design pattern has been specifically
designed to make it easier to verify and potentially
troubleshoot the initialisation phase. Generally, in
a SpaceFOM-compliant simulation, the Master
Federate manages the multi-phase initialisation.

5.1.6. The central execution control with transition
requests pattern
Requirement: Mode transitions in a SpaceFOM-
compliant Federation must occur in a controlled

manner. Regardless of the role played, either early
joiner or late joiner, any Federate can request a mode
transition.

Pattern: This pattern relies on the singleton object
instance ExCo described in the global configuration
data in singleton instance pattern above. Specifically,
the ExCO is used to store the current mode and the
next mode along with the time for the next mode. Any
Federate can request a mode transition, as shown in
Figure 8(a). Upon receiving the mode transition
request, the Master Federate calculates an acceptable
time for making the transition and stores this infor-
mation in the ExCO, which is shared with the other
Federates, as shown in Figure 8(b).

As depicted in Figure 8(b), mode transitions to
Freeze or Run are regulated with a synchronisation
point that coordinates Federates, which take different
amounts of time to complete the transition.
Conversely, in order to prevent any potential dead-
lock, the mode transition to Shutdown is not regulated
by a synchronisation point. All the Federates that
provide data or have HLA Time Regulation turned
on, must transition to the next state specified by the
Master Federate using the ExCO.

Data loggers and visualisers may not always take
part in state transitions. Interaction and attribute
updates related to requesting and performing the
state changes need to be sent in a ReceiveOrder man-
ner by using the HLA Time Management services.

Discussion: Note that mode transitions cannot
occur immediately because, in a multi-federate con-
text, each Federate may use different time steps or may
take some time to complete the transition. To address
this, the Master Federate is tasked to compute

Figure 6. Shared configuration data in singleton.

10 E. Z. CRUES ET AL.

Figure 7. Multi-phase initialisation.

Figure 8. The request mode transition to Freeze performed by a federate to the Master Federate (a). Upon receiving the request
mode transition, the Master Federate updates the ExCo Object by setting the next simulation mode to the requested one. The
execution flow of the requesting Federate is depicted in (b) .

JOURNAL OF SIMULATION 11

a relevant time interval in the future to make a mode
transition.

The transition to shutdown requires special consid-
eration in this design pattern, because an operator may
require going to shutdown at any point in time. For
example, a Federate becomes unresponsive or the
simulation fails in other ways. In this case, using
a synchronisation point makes no sense because unre-
sponsive Federates never achieve it, thus preventing
the Federation Execution from shutting down.

5.2. Time management patterns

This section presents the design patterns for handling
four time concepts delineated in the SpaceFOM stan-
dard: Simulation Scenario Time, HLA Logical Time,
Computer Clock Time, and Physical Time. Simulation
Scenario Time (SST) is the conceptual time associated
with the modelled systems. HLA Logical Time (HLT) is
the time used by HLA to timestamp messages, order
messages, and regulate time advance. This time con-
cept is related to SST through a starting point or epoch
(SST0); usually, HLT starts at zero. The Physical Time
is based on the classical Newtonian concept of abso-
lute real-world time. Computer Clock Time (CCT) it
the model for time used by the computer to represent
Physical Time. Three time management patterns, clo-
sely related to these time lines and SpaceFOM execu-
tion control, have been defined:

● Constant but potentially different federate time
steps;

● Coordinated execution time lines and pacing;
● Distributed hardware-based real-time pacing.

5.2.1. The constant but potentially different
federate time steps pattern
Requirement: Federates in a SpaceFOM-compliant
Federation Execution must be able to execute in time-

stepped synchronised coordination, even when the
constituent Federates have different time steps.
However, the Federates must have constant time-
steps and the Federate time-steps must have a least
common integer multiple relationship, Least Common
Time Step (LCTS).

Pattern: As depicted in (Figure 9), the Pacing
Federate is responsible for advancing time using
a common time step, known to all Federates as the
Federation Time Step. Any other Federate advances in
time using a time step, named the Federate Time Step,
which shall be an integer multiple n � 1 of the
Federation Time Step. Each participating Federate
advances at the native time step of its internal physics
model, named the Simulation Time Step. The Federate
Time Step must be an integer multiple n � 1 of the
Simulation Time Step.

This design pattern ensures that there will be recur-
ring HLA Logical times to which all Federates can be
granted, named Common Time Boundaries. These are
calculated using the least common integer multiple of
all Federate Time Steps, the Least Common Time Step
(LCTS). Any Common Time Boundary will be an inte-
ger multiple of the LCTS.

Discussion: In this pattern, the time-steps are con-
stant in the Federation, but they can take on different
values among Federates. As a consequence, the
Federation needs well-defined points in time to
check the completeness and consistency of the
Federation (e.g., check-pointing, snap-shooting or
freeze of the Federation).

Note that many Federates that advance time with
constant time steps may support time step configura-
tion; this flexibility in choice of Federate Time Step
facilitates the choice of Federation Time Step.
A Federate that has little or no flexibility in the choice
of its time step may restrict the choice of Federation
Time Step. When selecting a time steps for managing
physical models, it is important to take into

Figure 9. Federate and federation time steps.

12 E. Z. CRUES ET AL.

consideration the resolution and fidelity that is
required to meet specific simulation objectives.

5.2.2. The coordinated execution time lines and
pacing pattern
Requirement: One of the key features of a SpaceFOM-
compliant Federation is the ability to support time
synchronised execution between Federates using the
HLA Time Management services. In addition, the
SpaceFOM supports both paced (e.g., real-time) and
non-paced (e.g., as fast as possible) Federation
Executions regulated by the Pacing Federate.

Pattern: This pattern is based on a Federation hav-
ing the following three timelines: Simulation Scenario
Time (SST), HLA Logical Time (HLT), and Computer
Clock Time (CCT). SST and HLT are always linked
together by an offset represented in the Simulation
Scenario Time Epoch (SST0). The advancement of
SST and HLT are managed by the HLA Time
Management service Time Advance Request (TAR)
and Time Advance Grant (TAG) interfaces. When in
Run mode, each time managed Federate waits on the
TAG, performs its required computations, and then
issues a TAR before advancing to the next time step. If
the Federation Execution is not paced, then there is no
fixed relationship between SST/HLT and CCT.

As depicted in (Figure 10), a paced Federation
Execution follows the same TAR/TAG pattern above
but the Pacing Federate will also wait for its current
CCT to reach a specified real-time mark before advan-
cing to the next time step. This creates an additional
mode-dependent relationship between time lines
when running a paced Federation Execution.
Specifically, CCT is linked with SST and HLT time
lines when in Run mode but CCT is unlinked with SST
and HLT in Freeze mode. The Pacing Federate links
the CCT time line to the SST time line by calculating
a new offset between the current SST and the value of
CCT when entering Run mode; this offset is the CCT
epoch, denoted CCT0. In this pattern, only the Pacing
Federate maintains this linkage. All other Federates
maintain the standard TAR/TAG pattern.

Discussion: Note that only the Pacing Federate
should be running with a real-time constrained CCT,
unless a hardware-based distributed timing mechan-
ism like Central Timing Equipment (CTE) is used (see,
Subsection 5.2.3). Running more that one real-time
time managed Federate will eventually result in one or
more Federates running behind and holding back the
other Federates. This is due to the inevitable drift
between uncoordinated computer clocks.

5.2.3. The distributed hardware-based real-time
pacing pattern
Requirement: In addition to the standard paced
Federation Execution (see, Subsection 5.2.2),
a SpaceFOM-compliant Federation Execution can

also support pacing using Central Timing Equipment
(CTE), a distributed hardware-based time synchroni-
sation mechanism (e.g., a GPS timing card).

Pattern: This pattern is similar to the paced pattern
(see, Subsection 5.2.2), where the Pacing Federate reg-
ulates the advancement of time using its local CCT
and the HLA TAR/TAG interfaces. However, when
CTE is available to the Federates in the Federation
Execution, other CTE-capable Federates can be more
closely tied to a CTE-based CCT. In this pattern, both
the Master Federate and the Pacing Federate are
involved.

As delineated in Subsection 5.2.2, SST and HLT are
linked together by an offset represented by SST0.
However, in this case, the Pacing Federate’s CCT is
based on a CTE timing mechanism as depicted in
(Figure 11). The advancement of SST and HLT are
still managed by the the HLA Time Management
TAR/TAG services. When in Run mode, each time
managed Federate waits on the TAG, performs its
required computations, and then issues a TAR before
advancing to the next time step. A notable difference
between this pattern and the paced one (see,
Subsection 5.2.2) is that any Federate with a CTE-
based CCT can also regulate its time advance and,
like the Pacing Federate, wait on CCT to reach
a specified CCT mark before advancing to the next
time step. Note that the common CTE infrastructure
will prevent the CTE-enabled Federates CCT time
lines from drifting.

The question is, how do each of the CTE-enabled
Federates know the CTE-based CCT reference time to
go to Run mode? This is where the Master Federate
comes in. When CTE hardware is used and as part of
its mode transition logic, the Master Federate is
responsible for computing the appropriate new CTE-
based time to go to Run. This is shared with all
Federated through the ExCO
updates (next mode cte time).

Discussion: In general, Central Timing Equipment
(CTE) is hardware that provides a common clock
between physically separated computer systems and
can therefore establish a coordinated Compute Clock
Time (CCT) time line between simulations running on
those systems. CTE is often used to synchronise systems
with avionics emulators or flight hardware. The design
pattern requires that both the Master Federate and the
Pacing Federate use CTE if any Federate uses CTE.

5.3. Space reference frames management
patterns

Space simulations are composed of models that are
often formulated with respect to specific reference
frames; they are abstract coordinate systems that
allow, through a set of reference points, to locate and
orient physical objects in space and time.

JOURNAL OF SIMULATION 13

In any Federation Execution, one Federate may
have a preferred computationally convenient refer-
ence frame, whereas another Federate may use
a different one. So, how does one Federate work with
the data from another Federate if they have different
representational frames? The answer is that every
SpaceFOM-compliant Federation Execution has
a rooted directed acyclic graph of reference frame
associations, also known as a Reference Frame Tree
that provides transformations between Federate refer-
ence frames through these two design patterns:

● Reference frames explicitly specified using object
instances;

● Replaceable and extendable tree of reference
frames.

5.3.1. The reference frames explicitly specified
using object instances pattern
Requirement: A SpaceFOM-compliant Federation
Execution will maintain published instances of geo-
metrically related reference frames. Each reference
frame will be based on the SpaceFOM HLA

Figure 10. Advancing the scenario time versus the CCT time.

14 E. Z. CRUES ET AL.

ObjectClass ReferenceFrame. Any Federate that pub-
lishes state data will reference that data to a known
published ReferenceFrame instance.

Pattern: This pattern ensures the Federation
Execution publishes and maintains the necessary
information for participating Federates to translate
geometrically related data using reference frame trans-
formations. It relies on the publication of SpaceFOM
HLA ObjectClass ReferenceFrame instances for all
computationally relevant reference frames in the
Federation Execution. A ReferenceFrame ObjectClass
instance is created for each required reference frame.
Each reference frame is identified through a unique
name, specified according to the syntax delineated in

the SpaceFOM standard. Each reference frame speci-
fies a parent reference frame along with the transla-
tional state (i.e., position and velocity) and rotational
state (i.e., attitude and rotation rate); the position,
velocity, and attitude are expressed with respect to
the parent reference frame (see, Figure 12).
Quaternions are used to characterise orientation in
order to avoid singularities that could occur if Euler
coordinates were used.

Discussion: Many other FOMs adopt an implicit
Earth-centric coordinate system, for example, the
World Geodetic System – 1984 (WGS84) (see, Slater
and Malys (1998)). However, for many space-based
scenarios, it becomes conceptually difficult and often

Figure 11. The scenario time line and the CTE time line.

Figure 12. Reference frame.

JOURNAL OF SIMULATION 15

computationally impractical to use the same reference
frame to simulate the behaviour of space objects that
are significantly spatially dispersed (e.g., a rover oper-
ating on the Mars surface and a vehicle leaving Earth
orbit for Mars). It does not make sense to perform all
calculations using the same coordinate system.

5.3.2. The replaceable and extendable tree of
reference frames pattern
Requirement: A SpaceFOM-compliant Federation
Execution must maintain a rooted directed acyclic
graph of computationally relevant reference frame
associations, a Reference Frame Tree. Each of the com-
putationally relevant reference frames will be repre-
sented by a SpaceFOM ReferenceFrame ObjectClass
instance (see Subsection 5.3.1). The Reference Frame
Tree associations are maintained by name and the tree
can be extended, reorganised, or even replaced as new
reference frames are required.

Pattern: This pattern is based on a named reference
frame representing a single coordinate system defined
with respect to a known named parent reference
frame. This allows the reference frames to be orga-
nised as a tree with a defined root reference frame.
Only a single tree can exist within a SpaceFOM-
compliant Federation Execution; therefore, only
a single root reference frame can exist within
a SpaceFOM-compliant Federation Execution.
A reference to the root reference frame is stored in
the ExCO object and published by the Master Federate.

As presented in (Figure 13), each reference frame is
defined with respect to a known named parent frame
and defines its translational and rotational state with
respect to its parent frame; the exception is the root
reference frame which will have no parent. The refer-
ence frame states are expressed in translational position
and rotational attitude along with their first-time deri-
vatives; these can be used to compute kinematic trans-
formations between reference frames. A transformation

between any two frames in a tree is formulated by
chaining intervening reference frame transformations
while traversing the shortest path between the two
frames. The resulting transformation is used to com-
pute a state represented in an origin reference frame
into a state represented in a destination reference frame.

Discussion: The nature of this tree construct sup-
ports the dynamic addition of new reference frames
into the tree. The nature of the tree navigation process
supports a generalised algorithm for constructing and
applying reference frame transformation. It also sup-
ports simulation scenario dependent reference frames
and reference frame associations (trees).

In order for this pattern to be effective, only a single
reference frame tree can exist and only a single root
reference frame can exist. If more that one reference
frame tree were to exist, then there may not be a path
between an origin and destination reference frame and
no transformation could be computed. In addition, all
Federates in a SpaceFOM-compliant Federation
execution must publish the states of physical entities
in known and published reference frames.

An advantage of this design pattern is the possibi-
lity to develop and reuse Federates that simulate, for
example, the solar system bodies. Alternate Federates
can provide different models with different fidelity.
A disadvantage is the calculations required for mana-
ging the translational and rotational conversions
between reference frames. However, in many space
Federates, it is required anyway.

6. An example SpaceFOM-based federation

This section describes a generalised SpaceFOM
Federation, based on experiences from the European
Space Agency (ESA) – Harwell Robotics and
Autonomy Facility (HRAF) federation delfaexper-
iences. The purpose of the federation is to simulate
robotic Lunar, Mars and asteroid exploration

Figure 13. Coordinate system structure.

16 E. Z. CRUES ET AL.

scenarios, in support of integration, verification and
validation of autonomy components. The require-
ments on the federation are:

(1) A space craft and its sensors and navigation
systems need to be simulated.

(2) A set of reference frames related to the Earth,
Moon and Mars need to be provided for proper
spatial representation.

(3) Gravitational effects and perturbations must
also be taken into account.

(4) Data from the simulation must be logged and
visualised.

(5) The federation must be initialised in
a deterministic way. Execution control and
time advance must be managed.

The SpaceFOM supports federating these models by
providing a proven and standardised patterns for initi-
alisation, execution and management of time (see
Section 5). The SpaceFOM also provides
a standardised object model for information exchange.
It also allows for project specific extensions to be
added to the object model, in this case for specific
sensors and additional components (see Section 4).

The federation consists of seven Federates, as
shown in Figure 14.

The Federates are:

Master-Pacer - This is a Master and Pacing Federate
according to the SpaceFOM standard. It controls the
initialization and execution of the Federation. It also
performs pacing, thus controlling the relationship
between HLT, SST, and CCT, enabling the
Federation to run in real-time or scaled real-time.

Environment - This is a root reference frame publisher
according to the SpaceFOM standard. It publishes
required reference frames and their ephemerides, in
particular SolarSystemsBarycentricInterial,
SunCentricInertial, EarthMJ2000Eq, and MarsInertial.

Spacecraft - This simulates a robotic spacecraft, in
particular its sensors and actuators.

Navigation - This performs guidance, navigation and
control calculations.

Physics - This models gravitational effects and dis-
turbances on the spacecraft.

3D Visualizer - This provides a visualization of the
scenario.

Data Logger - This collects scenario data for later
analysis and replay.

During the development of the Federation, the
SpaceFOM has been extended with a number of FOM
modules to meet the specific needs of this Federation.
Extensions have been made using the new FOM mod-
ules Mission, Environment, SpaceCraft, Sensors and
Actuator, as shown in Figure 15.

The standardised SpaceFOM object classes have
been extended by subclassing, as shown in Figure 16.

The new classes are as follows:

● The standardised PhysicalEntity has been
extended with a CelestialBody class which adds
more attributes for planets, moons and asteroids;

● The standardised DynamicalEntity has been
extended with SpaceCraft;

● The standardised PhysicalInterface has been
extended with BasicDevice (like Antenna,
LandingLegs and SolarArrays), BasicSensor (like
Accelerometer, Altimeter, Camera, Gyroscope,
RFdoppler, StarTracker and SunSensor) as well as
BasicActuator (like ReactionWheel and Thrusters);

● An object class for MissionData has been added.

To further clarify how these object classes are used
at runtime, a spacecraft object instance is created
together with a number of physical interface object
instances, describing its components.

7. Using the standard

This section presents the frameworks and tools devel-
oped to support the SpaceFOM specifications along
with the most interesting and relevant experiences
from the exploitation of the standard.

7.1. Frameworks and tools

Many frameworks have been developed to support
the SpaceFOM. The SEE HLA Starter Kit (SKF) is
a general-purpose, domain-independent framework
that facilitates the development of HLA Federates

Figure 14. A example SpaceFOM federation.

JOURNAL OF SIMULATION 17

compliant with the SpaceFOM standard (see,
Falcone et al. (2017)). The SKF is designed and
developed by the SMASH-Lab (System Modelling
and Simulation Hub – Laboratory) of the
University of Calabria (Italy) working in coopera-
tion with the NASA Johnson Space Center (JSC),
Houston (TX, USA). The framework does not repre-
sent another implementation of the HLA standard,
but was designed with the aim of working on dif-
ferent HLA/RTI implementations. This characteris-
tic allows developers to concentrate only on the
specific aspects of the model without worrying
about the common and error-prone HLA
functionalities.

At NASA’s Johnson Space Center, the NASA
Exploration Systems Simulations (NExSyS) team
employed some of NASA’s principal modelling and
simulation tools to explore, develop, and test the
SpaceFOM. Two of NASA’s principal simulation
development tools are the Trick Simulation
Environment (aka. Trick) and the Trick High Level
Architecture (aka., TrickHLA) (see, Crues et al.
(2003), NASA Johnson Space Center (2020), and
NASA Johnson Space Center (JSC) (2020)). Trick is
one of NASA’s principal simulation development sys-
tems and many simulations have been developed in
Trick to support NASA’s human exploration missions.
TrickHLA is aTrick-compatible interface package that

Figure 15. Sample SpaceFOM module extensions.

Figure 16. SpaceFOM object classes with sample extensions.

18 E. Z. CRUES ET AL.

provides HLA-based interoperability with these simu-
lations. TrickHLA was developed prior to the specifi-
cation of the SpaceFOM standard. As part of the
SpaceFOM development process, TrickHLA was
extended to support full SpaceFOM compliance by
adding new SpaceFOM functionalities (i.e., role
responsibilities, initialisation sequencing, time stan-
dards, reference frame publication, and execution
control).

Pitch Technologies developed a number of tools for
the definition and execution of SpaceFOM applica-
tions (see, Pitch Technologies (2020)). The develop-
ment process of a SpaceFOM Federation, where
Pitch’s tools are used, will typically follow the follow-
ing steps:

● A Federation agreement design document is deli-
neated. Good guides and checklists for this can be
found in the Federation Execution Specific
Federation Agreement (FESFA) appendix of the
SpaceFOM standard;

● The SpaceFOM is extended, by using the Pitch
Visual OMT tool, with additional details that
meet the needs of the information exchange of
a Federation;

● To easily integrate existing simulations as
Federates in the Federation, a C++ or Java mid-
dleware can be generated using the Pitch
Developer Studio;

● Federates connect to an HLA/RTI infrastructure,
like the Pitch pRTI, and execute together;

● Simulation data is collected using the Pitch
Recorder tool for monitoring, playback, debug-
ging or analysis.

Concerning the tools, the Java Space Dynamics Library
(JSDL) library offers high fidelity models and algo-
rithms to manage space bodies according to the
SpaceFOM specifications. JSDL is a low-level space
dynamics library that facilitates the design and devel-
opment of space systems, such as space vehicles and
satellites (see, Falcone and Garro (2017)).

7.2. Experiences

Since 2011, SISO in cooperation with NASA and other
industrial and research societies has been organising
a yearly event named Simulation Exploration
Experience (SEE) (see, Elfrey et al. (2011)). The pur-
pose of this international project is to provide
a practical experience to undergraduate and postgrad-
uate students so as to increase their abilities in M&S
techniques and methods, especially, in Distributed
Simulation (DS) systems compliant with the IEEE
1516–2010 standard (see, IEEE Std. 1516–2010
(2010)).

The first draft of the SpaceFOM, version 0.1, has
been successfully experimented during the 2017 edi-
tion of the SEE project where eleven universities took
part: University of Alberta, University of Nebraska-
Lincon, the Faculdade de Engenharia de Sorocaba
FACENS, University of Calabria, University of
Genoa, University of Bordeaux, LMU Munich,
Brunel University London, University of Liverpool,
Jaipur National University, and New Bulgarian
University. In this edition, a moon settlement was
simulated with a dangerous scenario involving an
asteroid on collision course with the Moon (see, e.g.,
Nouman et al. (2013); S. J. E. Taylor et al. (2014)).

Starting from the experience gained from the SEE
2017 edition, the SpaceFOM has been updated in
order to improve the stability and reliability of com-
pliant Federates. The updated draft of the SpaceFOM,
version 0.2, was experimented in the 2018 edition of
the SEE project in which 10 universities participated
both remotely and onsite in Sofia, Bulgaria, from 8th
to 10th May 2018 to simulate a settlement on both
moon and mars. All the teams created for their
Federates a 3D model to interact with the
Distributed Observer Network (DON) environment,
which is a real-time 3D visualisation environment
based on developed by the NASA team that tracks all
the activities performed by the SEE Federates and
displays updates on the 3D environment during the
simulation execution through the DON Visualisation
Tool (DON-VT). Most of the SEE teams used the SEE
HLA Starter Kit for developing their Federates since it
is SpaceFOM fully-compliant and provides a set of
functionalities that make it easier for teams to use
both the HLA and SpaceFOM standards.

The SpaceFOM is particularly interesting also for
testing since it uses more of the powerful features of
HLA than most defence Federations, in particular the
extensive use of time management and synchronisation
points. The SpaceFOM also contains many clean and
reusable solutions to problems that the defence commu-
nity has been struggling with, such as multi-phase initi-
alisation, synchronised freeze, and hard real-time
synchronisation. It can be expected that other commu-
nities will reuse many design patterns from the
SpaceFOM.

8. Conclusions

The SpaceFOM standard, formally named SISO-STD
-018-2020, has been presented in this paper along with
design patterns that offer solutions to face with specific
SpaceFOM functionalities. The main objective of this
standard is to facilitate a-priori interoperability and
reuse of HLA-based space simulations. The SpaceFOM
provides a collection of HLA-compliant data constructs,
modelling and execution control process standards

JOURNAL OF SIMULATION 19

designed to link simulations of discrete physical entities
into distributed collaborative simulations of complex
space systems.

Several design patterns have been introduced to
address key issues in the distributed simulation of space
missions and systems. The adoption of these patterns is
not restricted to the space domain but they represent
a solid baseline for addressing general distribute simula-
tion issues, and thus they can find application in other
major domains where extensibility, interoperability, and
robustness are key properties to pursue.

Different experimentations have been performed in
international projects, such as in the context of the
Simulation Exploration Experience (SEE) project. It
has been shown that the SpaceFOM allows to create
robust space simulations in a simple and efficient way
through the provided functionalities without dealing
with HLA low-level implementation details.

Future research efforts will be devoted to further
exploit the standard in the context of: (i) the Artemis
program, a U.S. government-funded international
human spaceflight program that aims at landing the
first woman and the next man on the Moon by 2024;
(ii) the Harwell Robotics and Autonomy Facility
(HRAF) project, an ESA project whose main objective
is to provide advanced capabilities to support the
development and testing of complex autonomous sys-
tems for the exploration of the solar system.

Disclosure statement

No potential conflict of interest was reported by the
author(s).

ORCID

Alberto Falcone http://orcid.org/0000-0002-2660-1432
Alfredo Garro http://orcid.org/0000-0003-0351-0869

References

Albagli, A. N., Falcão, D. M., & de Rezende, J. F. (2016).
Smart grid framework co-simulation using hla
architecture. Electric Power Systems Research, 130,
22–33. https://doi.org/10.1016/j.epsr.2015.08.019

Chung, V., Crues, E., Blum, M., Alofs, C., & Busto, J. (2007).
An orion/ares i launch and ascent simulation-one seg-
ment of the distributed space exploration simulation
(dses). In Aiaa modeling and simulation technologies con-
ference and exhibit (p. 6625). Hilton Head, South
California: American Institute of Aeronautics and
Astronautics Inc.

Crues, E., Lin, A., & Hasan, D. (2003). Integrating hla into
the trick simulation development toolkit. In Aiaa model-
ing and simulation technologies conference and exhibit (p.
5810). Austin, Texas: American Institute of Aeronautics
and Astronautics Inc.

DAmbrogio, A., Bocciarelli, P., Delfa, J., & Kisdi, A. (2020).
Application of a model-driven approach to the develop-
ment of distributed simulations: The esa hraf case. In

2020 spring simulation conference (springsim) (pp.
1–12). Fairfax, VA, USA: Institute of Electrical and
Electronics Engineers (IEEE).

Elfrey, P. R., Zacharewicz, G., & Ni, M. (2011). Smackdown:
Adventures in simulation standards and interoperability.
In Proceedings of the 2011 winter simulation conference
(wsc) (pp. 3958–3962). Phoenix, AZ, USA: Institute of
Electrical and Electronics Engineers (IEEE)

Falcone, A., & Garro, A. (2017, September 18-20). A Java
library for easing the distributed simulation of space
systems. In 16th International Conference on Modeling
and Applied Simulation, MAS 2017, Held at the
International Multidisciplinary Modeling and Simulation
Multiconference, I3M 2017, Barcelona, Spain, (pp. 6–13).
CAL-TEK S.r.l.

Falcone, A., & Garro, A. (2019). Distributed co-simulation
of complex engineered systems by combining the high
level architecture and functional mock-up interface.
Simulation Modelling Practice and Theory (Simpat),
97,101967. Retrieved https://doi.org/10.1016/j.simpat.
2019.101967

Falcone, A., Garro, A., Taylor, S. J. E., Anagnostou, A.,
Chaudhry, N. R., & Salah, O. (2017). Experiences in
simplifying distributed simulation: The HLA develop-
ment kit framework. Journal of Simulation, 11(3),
208–227. https://doi.org/10.1057/s41273-016-0039-4

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (2001).
Design patterns: Abstraction and reuse of object-oriented
design. In Broy, Manfred and Denert, Ernst., Pioneers and
their contributions to software engineering (pp. 361–388).
Springer.

Gminder, R. (1996). Dis to hla integration, a comparative
evaluation. University of Central Florida: Institute for
Simulation and Training

Hasan, D., Bowman, J. D., Fisher, N., Cutts, D., &
Cures, E. Z. (2008). NASA constellation distributed simu-
lation middleware trade study. Simulation
Interoperability Standards Organization (SISO).

IEEE Std. 1278-1993. (1993). IEEE standard for information
technology – Protocols for distributed interactive simula-
tion applications–entity information and interaction.
IEEE Std 1278-1993 (pp. 1–64).

IEEE Std. 1516-2010. (2010). IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture (HLA):
1516-2010 (Framework and Rules); 1516.1-2010
(Federate Interface Specification); 1516.2-2010 (Object
Model Template (OMT) Specification).

Lee, J.-K., Lee, M.-W., & Chi, S.-D. (2003). Devs/hla-based
modeling and simulation for intelligent transportation
systems. Simulation, 79(8), 423–439. https://doi.org/10.
1177/0037549703040233

Lee, T.-D., Jeon, B.-J., Jeong, C.-S., & Choi, S.-Y. (2003).
Risa: Object-oriented modelling and simulation of
real-time distributed system for air defense. In
International conference on object-oriented information
systems (pp. 346–355). Geneva, Switzerland: Springer.

Li, Y., Li, Y., & Liu, J. (2007). An hla based design of space
system simulation environment. Acta Astronautica, 61(1–6),
391–397. https://doi.org/10.1016/j.actaastro.2007.01.011

Möller, B., Antelius, F., Johansson, M., & Karlsson, M.
(2016). Building scalable distributed simulations: Design
patterns for hla ddm. In Proceedings of the 2016 fall
simulation inter- operability workshop (pp. 1–10).
Orlando, Florida: Simulation Interoperability Standards
Organization (SISO).

Möller, B., Garro, A., Falcone, A., Crues, E. Z., &
Dexter, D. E. (2016, september 21-23). Promoting

20 E. Z. CRUES ET AL.

https://doi.org/10.1016/j.epsr.2015.08.019
https://doi.org/10.1016/j.simpat.2019.101967
https://doi.org/10.1016/j.simpat.2019.101967
https://doi.org/10.1057/s41273-016-0039-4
https://doi.org/10.1177/0037549703040233
https://doi.org/10.1177/0037549703040233
https://doi.org/10.1016/j.actaastro.2007.01.011

a-priori interoperability of hla-based simulations in the
space domain: The SISO space reference FOM initiative.
In 20th IEEE/ACM international symposium on distribu-
ted simulation and real time applications, DS-RT 2016,
london, united kingdom, (pp. 100–107). Institute of
Electrical and Electronics Engineers (IEEE).

Möller, B., Garro, A., Falcone, A., Crues, E. Z., &
Dexter, D. E. (2017, October 18-20). On the execution
control of HLA federations using the SISO space refer-
ence FOM. In 21st IEEE/ACM International Symposium
on Distributed Simulation and Real Time Applications,
DS-RT 2017, Rome, Italy, (pp. 75–82). Institute of
Electrical and Electronics Engineers Inc. Retrieved
https://doi.org/10.1109/DISTRA.2017.8167669

Möller, B., Gray, T., Kay, S., Kisdi, A., Buckely, K., & Delfa, J.
(2021). Experiences from the siso spacefom at the
European Space Agency. Simulation Interoperability
Standards Organization (SISO).

NASA Johnson Space Center. (2020). The TrickHLA - Trick
High-Level Architecture (HLA) framework for facilitating
IEEE 1516 simulation integration. Retrieved April 15, 2020,
from https://software.nasa.gov/software/MSC-24544-1

NASA Johnson Space Center (JSC). (2020). The trick simu-
lation environment. Retrieved April 15, 2020, from
https://github.com/nasa/trick

Nouman, A., Anagnostou, A., & Taylor, S. J. E. (2013).
Developing a distributed agent-based and DES simulation
using portico and repast. In 17th IEEE/ACM international
symposium on distributed simulation and real time applica-
tions, DS-RT 2013, delft, the netherlands, october 30 -
november 1, 2013 (pp. 97–104). IEEE Computer Society.
Retrieved https://doi.org/10.1109/DS-RT.2013.18

Nutaro, J., & Hammonds, P. (2004). Combining the model/
view/control design pattern with the devs formalism to
achieve rigor and reusability in distributed simulation.
The Journal of Defense Modeling and Simulation, 1(1),
19–28. https://doi.org/10.1177/154851290400100102

Perry, N., Ryan, P., & Zalcman, L. (1998). Provision of dis/
hla gateways for legacy training simulators. In Simtect
(Vol. 98, pp. 227–232). SimTecT 98, Adelaide, Australia:
Simulation Industry Association of Australia Adelaide.

Pitch Technologies. (2020). The HLA simulation
infrastructure. Retrieved April 15, 2020, from http://
www.pitch.se

Pristupa, A. V., & Zmeyev, O. (2004). Design patterns in
discrete-event simulation (des). In Proceedings. the 8th
russian-korean international symposium on science and
technology, 2004. korus 2004. (Vol.1, pp. 141–144).
Tomsk, Russia: Institute of Electrical and Electronics
Engineers (IEEE).

SISO-STD-001-2015. (2015). Standard for guidance, ratio-
nale, and interoperability modalities (grim) for the
real-time platform reference federation object model (rpr
fom), version 2.0.

SISO-STD-018-2020. (2020). Space reference federation
object model (SpaceFOM).

Slater, J. A., & Malys, S. (1998). WGS 84 — Past, present and
future. In F. K. Brunner (Ed.), Advances in positioning
and reference frames (pp. 1–7). Springer Berlin
Heidelberg.

Taylor, S. J. (2019). Distributed simulation: State-of-the-art
and potential for operational research. European Journal
of Operational Research, 273(1), 1–19. https://doi.org/10.
1016/j.ejor.2018.04.032

Taylor, S. J. E., Revagar, N., Chambers, J. A., Yero, M.,
Anagnostou, A., Nouman, A., . . . Elfrey, P. R. (2014,
october 1-3). Simulation exploration experience:
A distributed hybrid simulation of a lunar mining
operation. In 18th IEEE/ACM international symposium
on distributed simulation and real time applications, DS-
RT 2014, toulouse, france, (pp. 107–112). IEEE Computer
Society. Retrieved https://doi.org/10.1109/DS-RT.2014.
21

Topçu, O., & Oğuztüzün, H. (2017). Guide to distributed
simulation with hla. Springer.

Tu, Z., Zacharewicz, G., & Chen, D. (2016). A federated
approach to develop enterprise interoperability. Journal
of Intelligent Manufacturing, 27(1), 11–31. https://doi.
org/10.1007/s10845-013-0868-1

Williamson, T. (2013). between a priori and a posteriori
knowledge? The a Priori in Philosophy, 291. Oxford
University Press.

JOURNAL OF SIMULATION 21

https://doi.org/10.1109/DISTRA.2017.8167669
https://software.nasa.gov/software/MSC-24544-1
https://github.com/nasa/trick
https://doi.org/10.1109/DS-RT.2013.18
https://doi.org/10.1177/154851290400100102
http://www.pitch.se
http://www.pitch.se
https://doi.org/10.1016/j.ejor.2018.04.032
https://doi.org/10.1016/j.ejor.2018.04.032
https://doi.org/10.1109/DS-RT.2014.21
https://doi.org/10.1109/DS-RT.2014.21
https://doi.org/10.1007/s10845-013-0868-1
https://doi.org/10.1007/s10845-013-0868-1

	Abstract
	1. Introduction
	2. Related work
	3. The SISO SpaceFOM standardisation process
	4. SpaceFOM overview
	4.1. Roles and responsibilities
	4.2. Rules and guidelines
	4.3. Documentation
	4.4. FOM modules
	4.5. A-priori interoperability, robustness, and extensibility

	5. Interoperability solutions using design patterns
	5.1. Execution control patterns
	5.1.1. The federation execution orphan detection, creation, and join pattern
	5.1.2. The centralised checking of required federates pattern
	5.1.3. The detection and designation of early and late joining Federates pattern
	5.1.4. The global configuration using a singleton instance pattern
	5.1.5. The synchronised multi-phase initialisation pattern
	5.1.6. The central execution control with transition requests pattern

	5.2. Time management patterns
	5.2.1. The constant but potentially different federate time steps pattern
	5.2.2. The coordinated execution time lines and pacing pattern
	5.2.3. The distributed hardware-based real-time pacing pattern

	5.3. Space reference frames management patterns
	5.3.1. The reference frames explicitly specified using object instances pattern
	5.3.2. The replaceable and extendable tree of reference frames pattern

	6. An example SpaceFOM-based federation
	7. Using the standard
	7.1. Frameworks and tools
	7.2. Experiences

	8. Conclusions
	Disclosure statement
	ORCID
	References

