

Leonid Gurvits JIVE and TU Delft

Jupiter Icy Moons Explorer (JUICE) and its VLBI-based support (with PRIDE)

June 3, 2021

©Cristian Fattinanzi

and the second second

JUpiter ICy moons Explorer

Why a mission to Jupiter? **Bits of history Mission challenges** Where radio astronomy comes in

JUICE: bits of history

- ~2000–2005: success of Cassini and Huygens missions (NASA, ESA, ASI) 0 2006: Europlanet meeting in Berlin – "thinking aloud" on a Jovian mission • 2008: ESA-NASA jointly exploring a mission to giant planets' satellites •
 - ESA "Laplace" mission proposal (Blanc et al. 2009)
 - ESA Titan and Enceladus Mission (TandEM, Coustenis et al., 2009) •
 - NASA Titan Explorer \bullet
- 2009: two joint (ESA+NASA) concepts selected for further studies: •
 - **Europa Jupiter System Mission (EJSM)**
 - Titan Saturn System Mission (TSSM: Coustenis et al., 2009)
- 2010: EJSM-Laplace selected, consisting of two spacecraft: •
 - ESA's Jupiter Ganymede Orbiter (JGO) •
 - NASA's Jupiter Europa Orbiter (JEO)
- 2012: NASA drops off; EJSM-Laplace/JGO becomes JUICE 0
- 2015: NASA selects Europa Clipper mission (Pappalardo et al., 2013)

Europa Jupiter System Mission

2013: JUICE payload selection completed by ESA; JUICE becomes an L-class mission of ESA's Vision 2015-2025

Voyager 1, 1979 ©NASA

HOW DOES ITSEARCHWORK?LIFE

ROCKY MOONS

- A YAN INTERNA P POINT A

LAPLACE RESONANCE

ACTIVE SURFACE

TYPE III HABITAT

Amilian - amil

ORIGINS & FORMATION Callisto

OCEAN MOONS

HABITABILITY

TYPE IV HABITAT

JUICE concept

- European-led mission to the Jovian system
- First orbiter of an icy moon
- Science payload selected in Feb 2013, fully compatible with JUICE objectives

JUICE Science Themes

- Emergence of habitable worlds around gas giants
- Jupiter system as an archetype for gas giants

JGO/Laplace scenario with two Europa flybys and moderate-inclination phase at Jupiter

JUICE From the Jupiter system to extrasolar planetary systems

Habitable worlds

Cosmic Vision: The quest for evidence of life in the Solar System must begin with an understanding of what makes a planet habitable Ganymede and Europa are the archetypes of two classes of habitable worlds

Exploration of the habitable zone

Three large icy moons to explore

Ganymede

- Largest satellite in the solar system
- A deep ocean
- Internal dynamo and an induced magnetic field unique
- Richest crater morphologies
- Archetype of waterworlds
- Best example of liquid environment trapped between icy layers

Callisto

- Best place to study the impactor history
- Differentiation still an enigma
- Only known example of non active but ocean-bearing world
- The witness of early ages

Europa

- A deep ocean
- An active world?
- Best example of liquid environment in contact with silicates

JUICE

JUICE: The 'Firsts'

- Orbiter of an icy moon
- European-led mission to outer solar system
- Subsurface exploration of icy moons
- Opportunity to characterise the waterworlds class of planetary bodies
- Opportunity to completely explore Ganymede's unique combination of magnetic fields
- Prolonged study of mid-high latitudes of Jupiter's magnetosphere
- Direct measurements of atmospheric circulation in Jupiter's middle atmosphere

JUICE Science Payload

JANUS: Visible Camera System

PI: Pasquale Palumbo, Parthenope University, Italy. **Co-PI:** Ralf Jaumann, DLR, Germany

- \geq 7.5 m/pixel (on Ganymede)
- Multiband imaging, 340 1080 nm
- Icy moons' geology
- Io activity monitoring and other moons observations
- Jovian atmosphere dynamics

MAJIS: VIS-NIR/IR Imaging Spectrometer

PI: Yves Langevin, IAS, France

Co-PI: Guiseppe Piccioni, INAF, Italy

- Hyperspectral imaging in the range 0.5–5.54 μm
- \geq 75 m/pixel (on Ganymede)
- Surface composition
- Jovian atmosphere

UVS: UV Imaging Spectrograph PI: Randy Gladstone, SwRI, USA

- 55–210 nm
- 0.04°x 0.16°
- Aurora and Airglow
- Surface albedos
- Stellar and Solar Occultation

SWI: Sub-mm Wave Instrument **PI:** Paul Hartogh, MPS, Germany

- 600 GHz
- Jovian Stratosphere
- Moon atmosphere
- Atmospheric isotopes

GALA: Laser Altimeter

PI: Hauke Hussmann, DLR, Germany

- ≥ 40 m spot size
- \geq 0.1 m accuracy
- Shape and rotational state
- Tidal deformation
- Slopes, roughness, albedo

RIME: Ice Penetrating Radar

PI: Lorenzo Bruzzone, Trento, Italy **Co-PI**: Jeff Plaut, JPL, USA

- 16 m-long boom
- 9 MHz
- Penetration ~9 km
- Vertical resolution 50 m
- Subsurface investigations

JUICE Science Payload

JMAG: JUICE Magnetometer PI: Michele Dougherty, Imperial, UK

- Dual Fluxgate and Scalar mag
- ±8000 nT range, 0.2 nT accuracy
- Moon interior through induction
- Dynamical plasma processes

PEP: Particle Environment PackagePI: Stas Barabash, IRF-K, SwedenCo-PI: Peter Wurz, UBe, Switzerland

- Six sensor suite
- Ions, electrons, neutral gas (in-situ)
- Remote ENA imaging of plasma and torus

RPWI: Radio and Plasma Wave Investigation **PI:** Jan-Erik Wahlund, IRF-U, Sweden

- Langmuir Probes
- Search Coil Magnetometer
- Tri-axial dipole antenna
- E and B-fields
- Ion, electron and charged dust parameters

3GM: Gravity, Geophysics, Galilean MoonsPI: Luciano less, Rome, ItalyCo-PI: David J. Stevenson, CalTech, USA

- Ranging by radio tracking
- 2 µm/s range rate
- 20 cm range accuracy
- Gravity fields and tidal deformation

PRIDE: Planetary Radio Interferometer & Doppler Experiment PI: Leonid Gurvits, JIVE, EU/The Netherlands

- S/C state vector
- Ephemerides
- bi-static and radio occultation experiments

RADEM: Radiation Hard Electron Monitor Paul Scheller Institute (CH), LIP (Portugal)

- Electrons: 0.3 40 MeV
- Protons: 5 250 MeV
- Ions (He, O): 0.1 10 MeV

Broad science and interdisciplinary

Mission description: https://www.cosmos.esa.int/web/juice/home

SWI, PEP, RPWI, J-MAG, MAJIS, UVS, 3GM, PRIDE

Remote sensing instruments, GALA, RIME

RIME, GALA

3GM, J-MAG, RPWI, GALA, passive radar?

3GM, J-MAG

3GM, PRIDE, JANUS

European Space Agency

Spacecraft flight model: high gain antenna

Technical:

Instrument + s/c development

Radiations

Thermal

Power

EMC

Operationals:

- Navigation
- **Planetary** protection
- **Power and data** volume for the instruments
- **Programmatics:**
- Ariane 5 or 6? "OTOCOQ"

Human challenges

JUICE mission timetable

Events

Launch

5 planetary flybys (Earth-Moon/Earth / Ve Earth

Jupiter orbit insertion

1st Ganymede flyby (400 km closest approad 1st Callisto flyby (3500 km closest approach Two Europa flybys (400 km closest approad Jupiter inclined phase (250 days spent above inclination) Callisto 17 flybys season Ganymede orbit insertion Ganymede 500 km circular orbit End of nominal mission Impact on Ganymede

	Date
	End of August/mid-Sept 2022
enus / Earth /	September 2023-January 2029
	$J_{11}J_{12} = 2021$
1 \	July 2031
ch)	February 2032
1)	June 2032
ch)	July 2032
e 25 degrees	October 2032- June 2033
	July 2032-November 2033
	December 2034
	May 2035
	Sentember 2035
	O = 1 = 2025
	October 2035

sci.esa.int/juice cosmos.esa.int/juice Twitter @ESA_JUICE The Making of JUICE shorturl.at/rzY89

Planetary Radio Interferometry and Doppler Experiment (PRIDE)

- To understand
- To expl.

Spacecraft as a celestial radio source

Spacecraft tend to be radio loud... actually?

- Transmitter power 1 W
- Distance 5 AU (Jupiter)
- On-board antenna gain 3 dB
- Bandwidth 100 kHz

UHF (400 and 800 MHz), S (2.3 GHz), X (8.4 GHz), Ka (32 GHz)

Estimates of state-vectors of spacecraft:

- Geodynamics and planetology
- *Trajectory measurements in close vicinity of Solar System bodies (e.g. landings)*
- Fundamental physics
- Space-borne astrometry missions (e.g. Gaia)

Need for "eavesdropping" (sometimes, in desperation...)

- Operate at frequencies radio astronomers love (or hate):
 - Need for "higher-than-standard" accuracy in special cases

VEGA balloons VLBI tracking, 1986

$f = 1.6 \text{ GHz}, \Delta f = 2 \text{ MHz}, 20 \text{ radio telescopes}$

 $\sigma_x = 10 \text{ km}$ $\sigma_v = 1 \text{ m/s}$

Preston et al. 1986, Science, 231, 1414

Near-field VLBI and other opportunistic exercises

Not only λ/B , but also

BaselineFacility
$$\lambda = 3.6 \text{ cm } X$$
-ba $\lambda = 1 \text{ cm } K_a$ -ba

B

$$P = R_{nf} \propto \frac{B^2}{\lambda}$$
, Fraunhofer criterium
 $B = B$

	100 km	1000 km	10 ⁴ km
	MERLIN	EVN _{WE}	EVN
nd	2 AU	200 AU	0.1 pc
and	8 AU	750 AU	0.5 pc

Near-field VLBI (PRIDE) developments

- Planetary Radio Interferometry and Doppler Experiment (PRIDE)
 - User-oriented "observing opportunity"
 - Based on the JIVE-developed know-how, supported by many EVN organisations Concept PRIDE is based on know-how developed at JIVE in 2003–2012
- PRIDE adopted by ESA as one of 11 experiments of JUICE
 - Ramping-up preparatory activities started in 2012
 - (near-field) VLBI is mentioned as a desirable science support technique in >6 Voyage 2050 White Papers (October 2019)

MarsExpress GR035 (Dec 2013) – test and show-case

MEX/Phobos flyby, near-field VLBI tracking

- User-led experiment, PI P. Rosenblatt, Royal Observatory Belgium
- Uniquely close (58 km) Phobos flyby by MEX
 - 29 December 2013 (Sunday)
- Involved more than 30 radio telescopes globally
- Lasted for 26.5 hours continuously, ~3 MEX orbits
 - PRIDE data processing at JIVE with "operational" pipeline

Displacement between measured and predicted MEX position, 2 min per point (imaging approach).

Formal	precisi	<u>on (3σ):</u>		
	RA	34 µas	35 m	~0.17 nrad
	Dec	58 µas	60 m	~0.30 nrad

- mean value 2.5 mHz
- median value 2.2 mHz

PRIDE: two current "bests"

Record-deep penetration into Venus atmosphere (down to 41 km) by PRIDE Venus Express radio occultation experiment, Bocanegra et al. 2019. A&A 624, A59

PRIDE serendipty: CME detection

Analysis of an Interplanetary Coronal Mass Ejection 1 by a spacecraft radio signal Molera Calves et al. 2018, Space Weather

Radio occultation with PRIDE (Smart-1, 2006)

Smart-1 egress, 25.05.2006, S-band

Signal detected ~10 s before geometric egress (10 Fresnel zones below the Lunar limb); Power level -50 dB of the post-egress level.

Time (seconds)

Probing Ganymede's interior from Geodesy

- 0 help reaching the goals of the Geodesy experiment by performing:

Geodesy from orbit (tides+librations)

Tide vertical Love number: h₂

From Laser altimeter (**GaLa**): *Cross-over data-points* Vertical precision: 1 meter (Ah2=0.01) Lateral precision: (10 meters)

Tidal potential Love number: k₂

Tracking of orbiter (3GM + PRIDE): Gravity field Precision:

Amplitude of librations

Tracking of orbiter (**3GM + PRIDE**) (as done for Mars' LOD with DSN tracking)

PRIDE will be used in addition to ESTRACK tracking data (Doppler and range) to

• Precise Orbit Determination (POD) of the JUICE spacecraft orbiting Ganymede. Better constraints from PRIDE Doppler and lateral position measurements.

PRIDE: gravimetry, geodynamics, interior

Lateral position measurements

- orbital plane geometry
- Thorough simulations to assess the improvement.

Complementarity of PRIDE tracking: Lateral position S/C Position perpendicular to Doppler-LoS direction Better constraints on orbital perturbations, thus on gravity field coefficients determination, depending on

PRIDE-2021 vs Huygens VLBI tracking in 2005

Mission	Distance	Transmitter power/gain	Band	Time resolution	Delav	en eral)
	[AU]		[GHz]	in Solar		[<i>m</i>]
Huygens VLBI	8	3 W / 3 dr	where	500	15	1000
		(SC) gi	2.3 (S)	100	5	120
PRIC) acco	10 w / 6 dBi	8.4 (X)	10	3	70
<u>j</u> <u></u>			32 (Ka)	10	1	23

- Conservative estimate, today's technology

Minimal special requirements for the on-board instrumentation Helps to address the key science of JUICE (Solar System origins)

What PRIDE brings for JUICE state-vector estimates

- 1. Uniform coverage on the global baselines, 10 or more telescopes at any session
- 2. More collecting area, improved SNR for both calibrators and S/C, based on densified calibrators data base
- 3. Wider bandwidth for calibrators enables use of weaker compact calibrators closer to the target, potentially reaching a calibration accuracy at the level of a few micro arc seconds for in-beam cases
 - Wider bandwidth helps to better model the dispersive components of interferometric delay • (ionosphere and interplanetary plasma)
- 4. Multi-station Doppler and range measurements enable averaging of un-modeled dispersive and non-dispersive propagation effects and receiving station clock variations
- 5. Advanced broad band signal transfer and processing facilities

Near-field VLBI compendium (2021) – JIVE publications

General algorithms of PRIDE:

- Duev D.A. et al. 2012, A&A 541, A43
- Bocanegra Bahamon T.M. et al. 2018, A&A 609, A59
- Molera Calves G. et al. 2021, in preparation

PRIDE demonstrations:

- Duev D.A. et al. 2016, A&A 593, A34
- Duev D.A. et al. 2015, A&A 573, A99
- Bocanegra Bahamon T.M. et al. 2019, A&A 624 A59

Diagnostics of interplanetary plasma (scintillations):

- Molera Calvés G. et al. 2014, A&A 564, A4
- Molera Calvés G. et al. 2017, Space Weather 15, 1523-1534 Mars Express (Coronal Mass Ejection)

Forward look (JUICE and other prospective planetary missions):

- Dirkx D. et al. 2016, A&A 587, A156
- Dirkx D. et al. 2016, PSS 134, 82-95
- Dirkx D. et al. 2017, PSS 147, 14–27
- Dirkx D. et al. 2018, Journal of Geodesy, https://doi.org/10.1007/s00190-018-1171-x

Fundamental physics (Einstein Equivalence Principle):

Litvinov D. et al. 2018, Phys. Letters A 382, 2192

VLBI & Doppler algorithms Doppler analysis Software implementation

Mars Express RadioAstron (really near-field...) Venus Express

Mas Express

RadioAstron

Planetary science missions – near-field VLBI users

Europa Jupiter System Mission

JUICE

BepiColombo MMO

ExoMars

MarsExpress & TGO

LaRA under preparation by ESA & Roscosmos, RoB-led exp.

Near field VLBI (the dreams)

 $R \approx B^2 / \lambda$ **3D** astrometry of high T_B objects $T_{\rm B} > 10^{18} \, {\rm K}$?

Kardashev, Parijskij & Umarbaeva, 1973

Baseline	100 km	1000 km	10 ⁴ km	10 ⁵ km	10 ⁶ km	10 ⁷ km	10 ⁸ km
Facility	MERLIN	EVN WE	EVN	RadioAstron	L2	_	~1 AU
$\lambda = 3 \ cm$	2 AU	200 AU	0.1 pc	10 pc	1 kpc	100 kpc	10 Mpc
λ= 30 cm	3x10 ⁷ km	20 AU	2x10 ³ AU	1 pc	100 pc	10 kpc	1 Mpc
		WELL BURGER	Actron	actry of ovtrag	alactic pulcars	2	

Astrometry of extragalactic pulsars?