

# JFC Reflectivity Reassessed: **Preliminary Albedos and Statistical Trends**



R. C. Hicks (UCF: rhiannon.hicks@ucf.edu), Y. R. Fernández (UCF), S. C. Lowry (U. Kent), C. M. Lisse (JHU/APL), H. A. Weaver (JHU/APL)

Key Takeaways: We present preliminary geometric albedos for 57 Jupiter-family comets (JFCs), 6 of which are derived from multiple epochs of observations. The current average albedo value from our investigation is 0.04 ± 0.008. We aim to create the largest ever database of albedos as a stepping-stone for investigating ensemble JFC surface evolution. We are in the process of analyzing dozens of epochs of imaging photometry, and aim to have the completed database of ~100 albedos submitted for publication by Jan. 2027.

#### 1. Introduction:

Historically, albedo is not thoroughly studied for comets because it is difficult to obtain. In fact, literature provides albedo values for only 19 JFCs [1]. Deriving geometric albedos for a statistically significant population of JFCs would allow us to verify if the assumed average albedo value of 4% is accurate, and investigate what the actual distribution of albedos is. In addition, it would let us compare the JFC albedo distribution trends with those of their theorized progenitors (Centaurs and Trans-Neptunian Objects). Last, analyzing an albedo in conjunction with other properties like shape, color, rotation period, gas abundance ratios, density, or surface heterogeneity could provide deeper insights into a comet's structural changes over time.

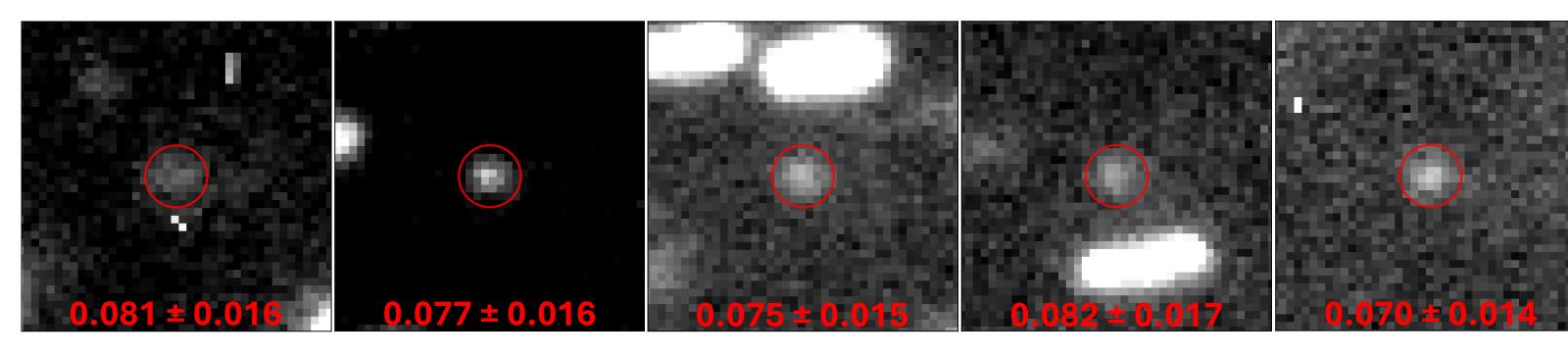



Fig. 1 – Individual image stacks of 152P and its  $p_r$  - 0°, shown with a 4-pixel radii aperture

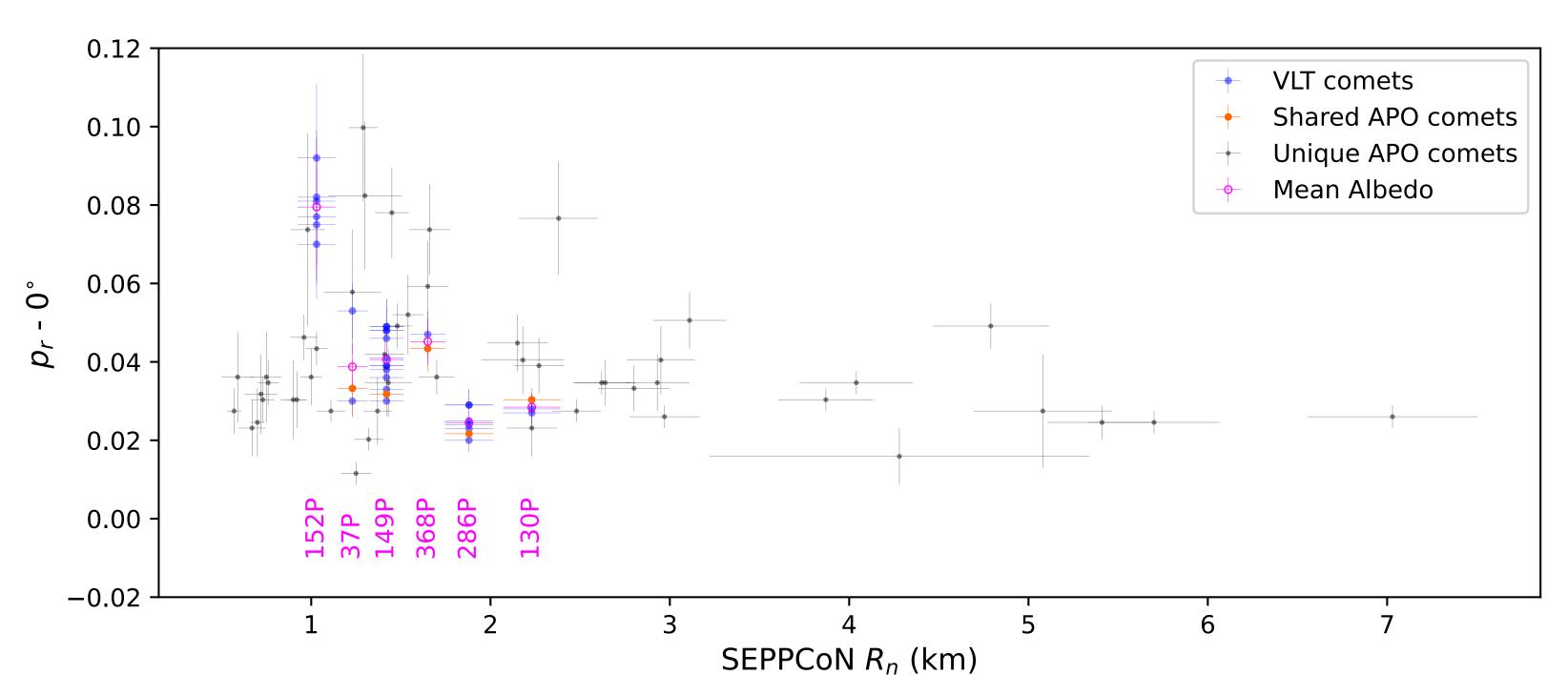



Fig. 2 – Overview of radius vs. albedo scatterplot for our 57 comets

#### 2. Methods:

Our approach to deriving albedos is to use visible image photometry of nuclei that have known radii thanks (mainly) to Spitzer's SEPPCoN (Survey of Ensemble Physical Properties of Cometary Nuclei) [2]. All our targets were observed in R-band, primarily by 3-8 meter telescopes, when they were 3-5 au from the Sun to maximize the chance of observing a bare nucleus. In total, we have observed roughly 100 comets – many at multiple epochs – that we intend to pursue geometric albedo values for.

#### 3. Data:

- We present preliminary  $p_r$  estimates for 57 JFC nuclei using data from 2 ground observation facilities: the 3.5 meter ARC telescope at Apache-Point Observatory (APO) and the 8.2 meter Very Large Telescope (VLT) at Paranal Observatory
- 51 comets were observed with APO only, 1 was observed with VLT only, and 5 were observed by both telescopes
- Comets observed by APO have been previously analyzed (preliminarily) [3], so we focus on the 6 new additions from the VLT data: 37P, 130P, 149P, 152P, 286P, 368P
- VLT data was collected on January 23<sup>rd</sup>, 24<sup>th</sup>, and 25<sup>th</sup> of 2009
- These results summarize our albedo estimates for comets that presented with no activity in our observations, and we therefore consider them as bare nuclei

# PRELIMINARY

# **VLT and APO Overall Mean Albedos**

|        |                                     | Atbedos                             |
|--------|-------------------------------------|-------------------------------------|
| Object | $p_r$ - 0°                          | $p_r$ - 10°                         |
| 6P     | $0.023 \pm 0.007$                   | $0.016 \pm 0.005$                   |
| 7P     | $0.035 \pm 0.006$                   | 0.024 ± 0.004                       |
| 14P    | 0.040 ± 0.009                       | 0.028 ± 0.006                       |
| 16P    | 0.032 ± 0.010                       | $0.022 \pm 0.007$                   |
| 22P    | 0.045 ± 0.007                       | 0.031 ± 0.005                       |
| 31P    | 0.059 ± 0.012                       | 0.041 ± 0.008                       |
| 32P    | 0.077 ± 0.014                       | 0.053 ± 0.010                       |
| 37P    | $0.039 \pm 0.006$                   | $0.027 \pm 0.004$                   |
| 47P    | $0.051 \pm 0.007$                   | $0.035 \pm 0.005$                   |
| 48P    | $0.026 \pm 0.003$                   | $0.018 \pm 0.002$                   |
| 57P    | $0.026 \pm 0.003$                   | $0.018 \pm 0.002$                   |
| 62P    | $0.036 \pm 0.012$                   | $0.025 \pm 0.008$                   |
| 68P    | $0.033 \pm 0.006$                   | $0.023 \pm 0.004$                   |
| 77P    | $0.033 \pm 0.000$ $0.074 \pm 0.012$ | $0.023 \pm 0.002$ $0.051 \pm 0.008$ |
|        |                                     |                                     |
| 79P    | $0.025 \pm 0.009$                   | $0.017 \pm 0.006$                   |
| 89P    | $0.035 \pm 0.009$                   | 0.024 ± 0.006                       |
| 94P    | $0.039 \pm 0.007$                   | $0.027 \pm 0.005$                   |
| 107P   | 0.078 ± 0.012                       | 0.054 ± 0.008                       |
| 113P   | $0.036 \pm 0.004$                   | $0.025 \pm 0.003$                   |
| 118P   | $0.082 \pm 0.019$                   | $0.057 \pm 0.013$                   |
| 119P   | $0.074 \pm 0.025$                   | $0.051 \pm 0.017$                   |
| 121P   | $0.030 \pm 0.003$                   | $0.012 \pm 0.002$                   |
| 123P   | $0.040 \pm 0.009$                   | 0.028 ± 0.006                       |
| 124P   | $0.035 \pm 0.003$                   | $0.024 \pm 0.002$                   |
| 127P   | $0.030 \pm 0.010$                   | $0.021 \pm 0.007$                   |
| 130P   | $0.028 \pm 0.004$                   | $0.019 \pm 0.003$                   |
| 131P   | $0.027 \pm 0.003$                   | $0.019 \pm 0.002$                   |
| 137P   | $0.035 \pm 0.003$                   | $0.024 \pm 0.002$                   |
| 138P   | $0.035 \pm 0.006$                   | 0.024 ± 0.004                       |
| 139P   | $0.027 \pm 0.009$                   | 0.019 ± 0.006                       |
| 143P   | $0.049 \pm 0.006$                   | $0.034 \pm 0.004$                   |
| 146P   | 0.046 ± 0.006                       | 0.032 ± 0.004                       |
| 149P   | 0.041 ± 0.005                       | 0.028 ± 0.004                       |
| 152P   | $0.080 \pm 0.016$                   | $0.055 \pm 0.011$                   |
| 162P   | $0.026 \pm 0.003$                   | $0.018 \pm 0.002$                   |
| 163P   | $0.020 \pm 0.003$                   | $0.014 \pm 0.002$                   |
| 169P   | $0.027 \pm 0.003$                   | $0.019 \pm 0.002$                   |
| 171P   | $0.012 \pm 0.003$                   | $0.008 \pm 0.002$                   |
| 172P   | $0.025 \pm 0.003$                   | $0.017 \pm 0.002$                   |
| 173P   | 0.016 ± 0.007                       | $0.011 \pm 0.005$                   |
| 197P   | $0.030 \pm 0.007$                   | $0.021 \pm 0.005$                   |
| 215P   | 0.100 ± 0.019                       | 0.069 ± 0.013                       |
| 219P   | $0.036 \pm 0.007$                   | $0.025 \pm 0.005$                   |
| 221P   | $0.043 \pm 0.004$                   | $0.030 \pm 0.013$                   |
| 223P   | $0.035 \pm 0.007$                   | $0.024 \pm 0.005$                   |
| 228P   | 0.058 ± 0.016                       | $0.040 \pm 0.011$                   |
| 256P   | 0.036 ± 0.012                       | $0.025 \pm 0.008$                   |
| 260P   | 0.052 ± 0.010                       | $0.036 \pm 0.007$                   |
| 286P   | $0.025 \pm 0.004$                   | $0.017 \pm 0.002$                   |
| 300P   | $0.023 \pm 0.007$                   | 0.016 ± 0.005                       |
| 306P   | 0.027 ± 0.006                       | 0.019 ± 0.004                       |
| 309P   | 0.049 ± 0.006                       | 0.034 ± 0.004                       |
| 315P   | 0.025 ± 0.004                       | 0.017 ± 0.003                       |
| 344P   | 0.042 ± 0.007                       | $0.029 \pm 0.005$                   |
| 368P   | 0.045 ± 0.006                       | 0.032 ± 0.004                       |
| 371P   | 0.030 ± 0.006                       | 0.021 ± 0.004                       |

 $0.027 \pm 0.014$ 

 $0.040 \pm 0.008$ 

 $0.019 \pm 0.010$ 

 $0.028 \pm 0.005$ 

378P

Mean:

### 4. Results:

#### Overview

- We reference our mean albedos for each comet to 0° and 10° phase angles assuming a linear phase coefficient of 0.04 mag/deg
- We calculate an overall  $p_r$  0° of 0.040 ± 0.008, which perfectly agrees with the typically assumed value. See **Fig. 3** for the distribution of albedos
- We report the first estimate of a geometric albedo for 152P, which is higher than average at 0.080 ± 0.016. We found no previous literature detailing 152P's albedo. See **Fig. 1** for example epochs of 152P
- For the remaining 5 comets our APO albedos are the only other reference values, except for 149P which has a reported  $p_v$  = 0.030 ± 0.005 [1] Radius vs. Albedo
- Fig. 2 showcases the albedo values for each VLT epoch and how the APO albedo compares. In general, there is good agreement between each of the VLT epoch albedos (blue) and with the APO albedo (yellow), which reinforces our overall mean values (magenta)
- There is no apparent trend of radius with albedo

## Comparison to Centaur Population

• Fig. 4 highlights where our 6 VLT  $p_r$  albedos fall in comparison to a recent distribution of Centaur  $p_v$  albedos [4]. As expected, the JFCs tend to be darker than the Centaur population, which reflects the fact that they are more thermally processed objects



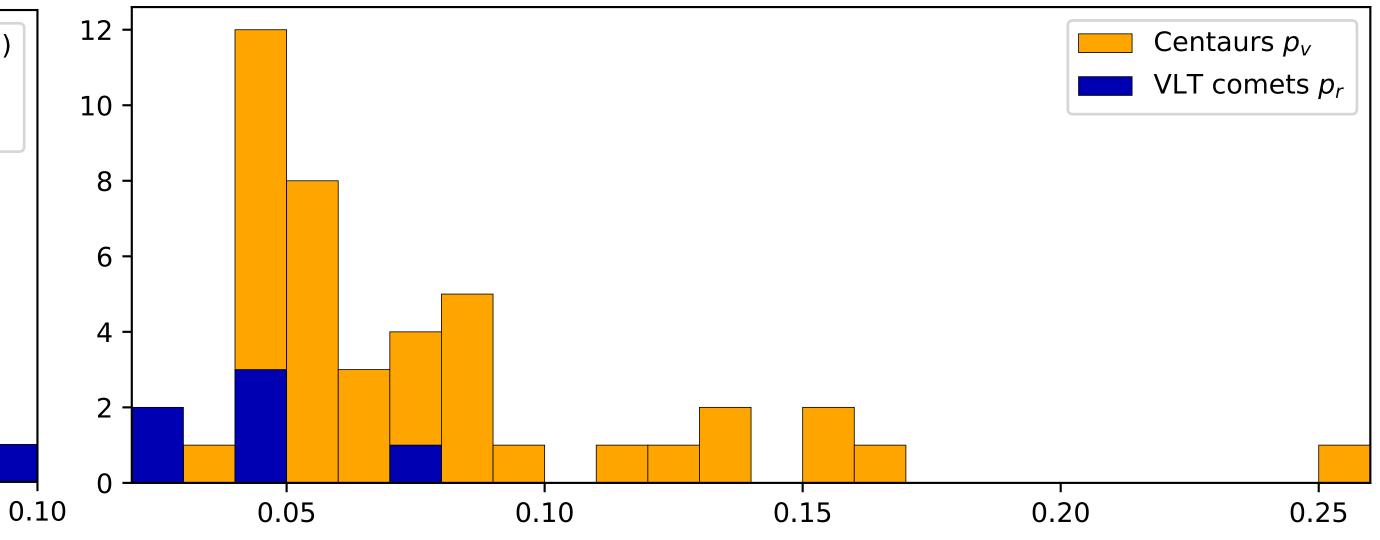



Fig. 3 – Histogram of our 57 preliminary albedo values

Fig. 4 – Histogram comparison of Centaur and preliminary VLT albedos

# 5. Future Work:

- We will continue to use our current methods to derive geometric albedo estimates for the remaining bare nuclei comets in our ground-based datasets
- We will begin deriving albedos for those comets who may show some minimal activity. We plan to apply a well-established coma minimization technique [5]
- Once we have gathered albedo values for all possible comets within our dataset we will report on the final statistical trends and overall distribution. Then, we will compare the JFCs to other small bodies populations
- In the future we look forward to applying our methods to new data collected from Vera Rubin/LSST and NEO Surveyor