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• The Circular Restricted Three Body Problem (CR3BP) is a simplified version 
of the N-Body Problem, by adding constraints [1]. 

• This model only has three bodies; one of the bodies is considered massless if 
compared to the others, and the two largest bodies - primaries - rotate in a 
circular orbit around the center of mass - barycenter - of the system. In this 
poster, the system consists of Earth, the Moon, and a spacecraft, referred to as 
cislunar space.

• The only unknowns of this model are related to the spacecraft's path since the 
motion of the primaries is known by the two-body problem solution [2].

• The Lagrangian points are derived from the Equations of Motion (EOMs) by 
setting the velocities, accelerations, and z component of the position equal to 
zero, giving five different solutions/points [2][5][6].

• The Jacobi constant is the only constant of motion for this model, serving as 
a powerful tool to understand and verify the behavior of a spacecraft, acting like 
the "DNA" of the orbit [2][3][4].

• This model does not account for all the existing perturbations, which means that if 
applied in reality, the spacecraft would need slight adjustments to maintain its 
path.

• The periodic orbits in the CR3BP are grouped based on their shapes, locations, 
and stabilities. These groups are referred as families. 

• The Gateway mission is to be positioned on the Near Rectilinear Halo Orbits 
(NRHOs), a subset of the Halo Orbits family.

• Other key families that could be relevant to the Artemis program are the Distant 
Retrograde Orbits (DROs) and the Butterfly Orbits, as they could be used as 
relatively cheaper transfer orbit options [8][9].

• The Equations of Motion (EOMs) derived from the CR3BP model:

𝑥̈𝑥 = 2𝑦̇𝑦 + 𝑥𝑥 − 1−𝜇𝜇 𝑥𝑥+𝜇𝜇
𝑟𝑟13

− 𝜇𝜇 𝑥𝑥− 1−𝜇𝜇
𝑟𝑟23

 ,  𝑦̈𝑦 = −2𝑥̇𝑥 + 𝑦𝑦 − 1−𝜇𝜇 𝑦𝑦
𝑟𝑟13

− 𝜇𝜇𝜇𝜇
𝑟𝑟23

 ,    𝑧̈𝑧 = − 1−𝜇𝜇 𝑧𝑧
𝑟𝑟13

− 𝜇𝜇𝜇𝜇
𝑟𝑟23

 

• The EOMs are in the synodic frame, which is a non-dimensional frame that has its 
center at the barycenter of the system, and the location of the primaries is constant 
in time. The mass ratio of this system is 𝜇𝜇 = 0.01215052404, and the coordinates of 
Earth and Moon are −𝜇𝜇, 0, 0 , [1 − 𝜇𝜇, 0, 0], respectively. The time unit (TE) is 382981 
seconds, found by dividing the Period of the Moon by 2𝜋𝜋.

• A code that solves for the EOMs given an initial condition for a periodic orbit, Position 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and Velocity (𝑥𝑥,𝑦𝑦, 𝑧𝑧) was created.

• The code propagates the orbit finds its period, Jacobi constant, and plot those. For 
the numerical integration ODE45 was used, and for the other calculations multiple 
functions were created.

• The Jacobi constant value for all the orbits fluctuated in around 10−6 decimals, so 
they were averaged before adding it to each plot.

• The initial conditions, the Lagrangian coordinates, and 𝜇𝜇 were taken from the Jet 
Propulsion Laboratory (JPL) Three-Body Periodic orbits database [10].

• This database was used to validate the results, Jacobi constant and the Period, 
and to evaluate how close the initial and final conditions were.

• The orbits are visualized in a 3D plot and depending on their locations, the primaries 
or the Lagrangian points were added to ensure a better result interpretation. 

• This study shows how even orbits from the same family have different 
characteristics and could serve for various types of space missions.

• The gateway mission requires a periodic orbit that is easily accessible – from 
both Earth and Moon - stable and has good communication with Earth; the 
NRHO subgroup portrays these characteristics, as shown in Figure 5.

• These results confirm how important a close analysis of a family of orbits is 
before any trajectory is chosen.

• .Future work studies are planned to further this analysis by using the Elliptic 
Restricted Three Body Problem (ER3BP).

• Both DROs chosen have similar geometries - circular shapes - but have periods 
that differ quite a bit; the orbit in Figure 1 has a period of around 27.91 days, 
while the Period for Figure 2 is around 0.42 days (10.12 hours). 

• Furthermore, Figure 1 has a wide geometry, passing very far from the Moon and 
arguably close to Earth. Meanwhile, the other DRO stays around the premises of 
the Moon.

• Analyzing the Butterfly family, it is possible to see a slight change in the geometry 
between the two orbits plotted, which is not seen in the DROs. Both present 
curves in their path, suggesting the name of the family; However, Figure 4 has 
many more turns than Figure 3, which presents only two wing-shaped paths.

• The Periods of Figure 3 and 4 21.5 and 39.15 days, respectively, may seem quite 
large; however, it is essential to recall the magnitude of the trajectories as two 
Lagrangian points, 𝐿𝐿1 and 𝐿𝐿2, surround their paths.

• The two orbits of the Halo Orbits family, NRHO subgroup, were quite similar in 
shape, location, and period but with a key difference: Figure 6 has a path that 
goes through the surface of the Moon - not feasible in a real mission - while 
Figure 5's trajectory stays relatively close to the surface but does not go through. 

• The numerical integration alone gives insights if the orbit passes near or through 
a primary as it demands a much smaller time step to function and adequately 
plot the orbit. 

• A comparison error was calculated using the JPL data (Table 2) to check the 
accuracy of the results (Table 1).

• The Period and Jacobi constant values obtained from the code were extremely 
close to the actual values for all the orbits plotted, with the errors ranging from 
0.00016% to 0.11695% for the Period and 9.8024 ∗ 10−8% to 1.85953 ∗ 10−6% for 
the Jacobi constant.

• The error percentages for the position and velocity vectors rose in the value for 
position y, velocity x, and velocity z for all the orbits plotted, causing the error 
percentages to be relatively high. If the raw numbers are analyzed, the increase 
is not as significant since both could be rounded to zero.
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Figure 5: A Near Rectilinear Halo Orbit (NRHO) 
873 from JPL’s website

Figure 6: A Near Rectilinear Halo Orbit (NRHO) 
856 from JPL’s website

Figure 3: Butterfly Orbit 717 from JPL’s website Figure 4: Butterfly Orbit 219 from JPL’s website

Figure 2: Distant Retrograde Orbit (DRO) 1020 from JPL’s websiteFigure 1: Distant Retrograde Orbit (DRO) 313 from JPL’s website

Code DRO One DRO two Butterfly One Butterfly Two NRHO One NRHO Two
Period 6.295642E+00 9.510400E-02 4.849971E+00 8.831549E+00 1.900588E+00 2.106034E+00
Jacobi Cons 1.883512E+00 3.780418E+00 3.063873E+00 2.928535E+00 2.983627E+00 2.950908E+00
Final position X 9.165727E-02 9.736433E-01 9.263977E-01 1.038228E+00 9.331088E-01 9.307215E-01
Final position Y -4.817030E-05 -1.428232E-05 2.574174E-04 6.963240E-04 -2.064545E-04 -1.877343E-04
Final position Z 2.381906E-32 -2.699959E-33 1.489778E-01 2.370133E-01 2.433557E-01 2.827207E-01
Final velocity X 9.684073E-04 -9.433273E-04 4.738666E-04 9.996636E-04 -3.502231E-04 -3.366634E-04
Final velocity Y 4.145391E+00 9.393308E-01 -1.554421E-01 -2.906538E-01 9.272659E-02 8.186583E-02
Final velocity Z -2.082754E-31 2.983747E-32 9.996633E-04 9.345702E-04 9.997387E-04 9.997531E-04

JPL data DRO One DRO two Butterfly One Butterfly Two NRHO One NRHO Two
Period 6.295652E+00 9.511821E-02 4.851625E+00 8.833945E+00 1.902813E+00 2.108326E+00
Jacobi Cons 1.883512E+00 3.780418E+00 3.063873E+00 2.928535E+00 2.983627E+00 2.950908E+00
Initial position X 9.165728E-02 9.736433E-01 9.263983E-01 1.038229E+00 9.331084E-01 9.307211E-01
Initial position Y -4.253164E-27 -1.413784E-28 -2.268074E-28 -4.138555E-28 1.468078E-27 -4.008754E-25
Initial position Z 2.375627E-32 -2.643816E-33 1.489785E-01 2.370145E-01 2.433568E-01 2.827218E-01
Initial velocity X -2.777072E-12 4.654727E-13 -8.643183E-16 -4.334901E-14 -1.530801E-12 -1.608188E-10
Initial velocity Y 4.145391E+00 9.393313E-01 -1.554439E-01 -2.906567E-01 9.272758E-02 8.186675E-02
Initial velocity Z -1.851571E-31 4.619839E-32 -3.158578E-14 -9.625826E-14 8.198274E-12 7.803142E-10

Table 1: Results obtained using the MATLAB code after one revolution, and the Period, Position, and Velocity are in non-dimensional 
units.

Table 2: Data collected from the JPL website for each specific orbit plotted, the  Period, Position, and Velocity are in non-dimensional 
units.
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