Introduction

The Circular Restricted Three Body Problem (CR3BP) is a simplified version
of the N-Body Problem, by adding constraints [1].

This model only has three bodies; one of the bodies is considered massless if
compared to the others, and the two largest bodies - primaries - rotate in a
circular orbit around the center of mass - barycenter - of the system. In this
poster, the system consists of Earth, the Moon, and a spacecraft, referred to as
cislunar space.

The only unknowns of this model are related to the spacecraft's path since the
motion of the primaries is known by the two-body problem solution [2].

The Lagrangian points are derived from the Equations of Motion (EOMs) by
setting the velocities, accelerations, and z component of the position equal to
zero, giving five different solutions/points [2][5][6].

The Jacobi constant is the only constant of motion for this model, serving as
a powerful tool to understand and verify the behavior of a spacecraft, acting like
the "DNA" of the orbit [2][3][4].

This model does not account for all the existing perturbations, which means that if
applied in reality, the spacecraft would need slight adjustments to maintain its
path.

The periodic orbits in the CR3BP are grouped based on their shapes, locations,
and stabilities. These groups are referred as families.

The Gateway mission is to be positioned on the Near Rectilinear Halo Orbits
(NRHOs), a subset of the Halo Orbits family.

Other key families that could be relevant to the Artemis program are the Distant
Retrograde Orbits (DROs) and the Butterfly Orbits, as they could be used as
relatively cheaper transfer orbit options [8][9].

Methods

The Equations of Motion (EOMs) derived from the CR3BP model:
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The EOMs are in the synodic frame, which is a non-dimensional frame that has its
center at the barycenter of the system, and the location of the primaries is constant
In time. The mass ratio of this systemis u = 0.01215052404, and the coordinates of
Earth and Moon are [—u, 0,0], [1 — u, 0, 0], respectively. The time unit (TE) is 382981
seconds, found by dividing the Period of the Moon by 2r.

A code that solves for the EOMs given an initial condition for a periodic orbit, Position
(x,vy,z) and Velocity (x, y, z) was created.

The code propagates the orbit finds its period, Jacobi constant, and plot those. For
the numerical integration ODE45 was used, and for the other calculations multiple
functions were created.

The Jacobi constant value for all the orbits fluctuated in around 10~° decimals, so
they were averaged before adding it to each plot.

The initial conditions, the Lagrangian coordinates, and u were taken from the Jet
Propulsion Laboratory (JPL) Three-Body Periodic orbits database [10].

This database was used to validate the results, Jacobi constant and the Period,
and to evaluate how close the initial and final conditions were.

The orbits are visualized in a 3D plot and depending on their locations, the primaries
or the Lagrangian points were added to ensure a better result interpretation.
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Figure 1: Distant Retrograde Orbit (DRO) 313 from JPL's website
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Figure 2: Distant Retrograde Orbit (DRO) 1020 from JPL’'s website

Table 1: Results obtained using the MATLAB code after one revolution, and the Period, Position, and Velocity are in non-dimensional

units.

Code

Period

Jacobi Cons
Final position X
Final position Y
Final position Z
Final velocity X
Final velocity Y
Final velocity Z

Table 2: Data collected from the JPL website for each specific orbit plotted, the Period, Position, and Velocity are in non-dimensional

units.

JPL data
Period
Jacobi Cons
Initial position X
Initial position Y
Initial position Z
Initial velocity X
Initial velocity Y
Initial velocity Z

DRO One
6.295642E+00
1.883512E+00
9.165727E-02
-4.817030E-05
2.381906E-32
9.684073E-04
4.145391E+00
-2.082754E-31

DRO One
6.295652E+00
1.883512E+00
9.165728E-02
-4.253164E-27
2.375627E-32
-2.777072E-12
4.145391E+00
-1.851571E-31

Butterfly Orbit One - CR3BP model
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DRO two
9.510400E-02
3.780418E+00
9.736433E-01
-1.428232E-05
-2.699959E-33
-9.433273E-04
9.393308E-01
2.983747E-32

DRO two

Butterfly One
4.849971E+00
3.063873E+00
9.263977E-01
2.574174E-04
1.489778E-01
4.738666E-04
-1.554421E-01
9.996633E-04

Butterfly One

9.511821E-02 4.851625E+00

3.780418E+00
9.736433E-01
-1.413784E-28
-2.643816E-33
4.654727E-13
9.393313E-01
4.619839E-32

Figure 5: A Near Rectilinear Halo Orbit (NRHO)

873 from JPL’s website

3.063873E+00

9.263983E-01
-2.268074E-28

1.489785E-01
-8.643183E-16
-1.554439E-01
-3.158578E-14

Butterfly Two
8.831549E+00
2.928535E+00
1.038228E+00
6.963240E-04
2.370133E-01
9.996636E-04
-2.906538E-01
9.345702E-04

Butterfly Two
8.833945E+00
2.928535E+00
1.038229E+00
-4.138555E-28
2.370145E-01
-4.334901E-14
-2.906567E-01
-9.625826E-14

Orbit

NRHO One

1.900588E+00
2.983627E+00
9.331088E-01
-2.064545E-04
2.433557E-01
-3.502231E-04
9.272659E-02
9.997387E-04

NRHO One
1.902813E+00
2.983627E+00
9.331084E-01
1.468078E-27
2.433568E-01
-1.530801E-12
9.272758E-02
8.198274E-12

Butterfly Orbit Two - CR3BP model
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NRHO Two
2.106034E+00
2.950908E+00

9.307215E-01
-1.877343E-04
2.827207E-01
-3.366634E-04

8.186583E-02
9.997531E-04

NRHO Two
2.108326E+00
2.950908E+00

9.307211E-01
-4.008754E-25
2.827218E-01
-1.608188E-10

8.186675E-02
7.803142E-10

Figure 4: Butterfly Orbit 219 from JPL's website

Near Rectlinear Halo Orbit (NRHO) Two - CR3BP model
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Figure 6: A Near Rectilinear Halo Orbit (NRHO)

856 from JPL’s website
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Discussion

« Both DROs chosen have similar geometries - circular shapes - but have periods
that differ quite a bit; the orbit in Figure 1 has a period of around 27.91 days,
while the Period for Figure 2 is around 0.42 days (10.12 hours).

* Furthermore, Figure 1 has a wide geometry, passing very far from the Moon and
arguably close to Earth. Meanwhile, the other DRO stays around the premises of
the Moon.

* Analyzing the Butterfly family, it is possible to see a slight change in the geometry
between the two orbits plotted, which is not seen in the DROs. Both present
curves in their path, suggesting the name of the family; However, Figure 4 has
many more turns than Figure 3, which presents only two wing-shaped paths.

« The Periods of Figure 3 and 4 21.5 and 39.15 days, respectively, may seem quite
large; however, it is essential to recall the magnitude of the trajectories as two
Lagrangian points, L; and L,, surround their paths.

 The two orbits of the Halo Orbits family, NRHO subgroup, were quite similar in
shape, location, and period but with a key difference: Figure 6 has a path that
goes through the surface of the Moon - not feasible in a real mission - while
Figure 5's trajectory stays relatively close to the surface but does not go through.

* The numerical integration alone gives insights if the orbit passes near or through
a primary as it demands a much smaller time step to function and adequately
plot the orbit.

A comparison error was calculated using the JPL data (Table 2) to check the
accuracy of the results (Table 1).

* The Period and Jacobi constant values obtained from the code were extremely
close to the actual values for all the orbits plotted, with the errors ranging from
0.00016% to 0.11695% for the Period and 9.8024 x 1073% to 1.85953 * 10°% for
the Jacobi constant.

* The error percentages for the position and velocity vectors rose in the value for
position vy, velocity x, and velocity z for all the orbits plotted, causing the error
percentages to be relatively high. If the raw numbers are analyzed, the increase
IS not as significant since both could be rounded to zero.

Conclusion & Future Works

 This study shows how even orbits from the same family have different
characteristics and could serve for various types of space missions.

 The gateway mission requires a periodic orbit that is easily accessible — from
both Earth and Moon - stable and has good communication with Earth; the
NRHO subgroup portrays these characteristics, as shown in Figure 5.

 These results confirm how important a close analysis of a family of orbits is
before any trajectory is chosen.

 _Future work studies are planned to further this analysis by using the Elliptic
Restricted Three Body Problem (ER3BP).
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