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Mars:
Multi-Agent Reinforcement learning System for coordinating spacecraft swarms in Martian orbit
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Orbiting spacecraft swarms for mars exploration 
face challenges due to communication delays from 
Earth and a lack of global positioning system 
(GPS). Due to the complexity of the dynamical 
environment, traditional methods lack the required 
robustness. Current methods like the spherical 
harmonic representation are effective outside of a 
specific radius but diverges within the Brillouin 
sphere and in the presence of multi-body systems. 
We propose a combined computational method that 
utilizes physics-informed neural networks (PINNs) 
with reinforcement learning models to create 
autonomous satellite controls for these orbiting 
swarms.
These PINNs will model Mars-centric orbital 
dynamics including perturbations from Phobos and 
Deimos, atmospheric drag, and planetary 
oblateness. The multi-agent reinforcement learning 
model will be utilized for formation keeping, 
collision avoidance, and required reconfiguration. 
They will be trained on current Martian orbiter 
data, and multi-agent reward functions for fuel 
conservation and safety and maintain orbital 
integrity. The model will support 5-50 spacecraft 
with varied onboard missions and orbits. 

Abstract Background
Martin & Schaub 2022 showed that PINNs were 
better at modeling gravitational potential fields 
around more spherical bodies. PINNs were used to 
predict and model the gravitational field around the 
Earth and Moon (fig 1). While both worked better 
than traditional methods, the model worked 
significantly better for the Earth because of the 
“smoothness factor” (𝑆௣) of the planet. Which 
takes the tallest point on the planet (𝑝்) and the 
lowest point on the planet (𝑝௅), and planetary 
radius, 

𝑆௣ =
𝑝் − 𝑝௅

𝑟௣

Earth:  𝑠 = 0.00311
Moon: 𝑠 = 0.01145
Mars: 𝑠 = 0.00853

The smoothness factor of Mars is closer to Earth’s 
so the PINN should be significantly better at 
modeling the gravitational field around Mars than 
current computational methods. 

Introduction
Physics-Informed Neural Networks (PINNs) 
optimize weights and biases between hidden layers 
to create a model that can predict high-order 
functions in a robust, and efficient manner, whilst 
holding the solution to physical laws. These are 
perfectly suited for orbital solutions due to their 
difficult solutions.  

Methods
The following equations model the controls equations 
for an n-body problem with no maneuvers. These 
equations form the basis for the orbital physics ODE, 
including orbital perturbations from 𝐽ଶ and 
atmospheric drag on the satellite. 

These equations can then be placed into our PINN
(fig 2) to form the second loss function. 

Fig 1. Gravitational potential of the Earth, modeled with a PINN (top left), gravitational 
potential of Earth, modeled using spherical harmonics (bottom left). Gravitational potential 
of Moon, modeled using spherical harmonics (top right). Gravitational potential of Moon, 
modeled using spherical harmonics (bottom right). Martin &Schaub 2022

Fig 2. Basic outline for setup of physics-informed neural network to model the 
gravitational dynamics of an n-body system, integrate these models out and predict 
possible collisions. 


