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• Neck ultrasound (NUS) is widely used for 
real-time, non-invasive assessment of 
airway structures, supporting procedures.

• Deep learning (DL)-based object 
detection models can automate 
anatomical landmark identification in US 
images, improving speed and consistency.

• Class imbalance hinders detection of 
critical but underrepresented structures 
like tracheal rings and vocal folds.

Hypothesis 
Combining text-to-image diffusion and class-
aware sampling can significantly improve 
detection of underrepresented anatomical 
classes in ultrasound.

Fig. 2: Overview of the proposed T2ID-CAS framework.

• The research was approved by the 
Institutional Review Board (IRB).

• NUS was collected from 10 adults (3 Male/ 
7 Female, Average Age 52.6 ±14.5) using a 
Terason uSmart 3200t ultrasound device.

• Multiple 10-second transverse cineloops 
per subject were recorded covering key 
airway regions.

• There are 6 classes: Thyroid cartilage, 
cricoid cartilage, strap muscles, thyroid 
lobes, vocal folds, tracheal rings.

• Fig. 1 shows the class imbalance of the 
dataset resembling long-tailed distribution.

• 7,464 frames were resized to 320×320 
pixels for model training.

Fig. 1: Long-tailed distribution of instance and image 
counts per class in the neck US dataset.

T2ID-CAS integrates three strategies (Fig. 2) to 
mitigate class imbalance in NUS.
1.  Text-to-Image Latent Diffusion + LoRA
• Fine-tuned Stable Diffusion XL (SDXL) using 

Low Range Adaptation (LoRA) on 840 
annotated ultrasound images of vocal folds 
and tracheal rings

• Generated 600 synthetic images (512×512) 
using class-specific text prompts

• Evaluated using FID (Fréchet Inception 
Distance), IS (Inception Score), and CLIP 
Score (Contrastive Language-Image 
Pretraining.

2.  Data Sampling and Augmentation 
• Mosaic + Mixup: Combines multiple images 

and blends image-label pairs.
• Repeat Factor Sampling (RFS): Increases 

sampling frequency of rare classes by 
duplicating images based on inverse class 
frequency.

• Class-Aware Sampling (CAS): Ensures 
balanced training by sampling each class 
equally during mini-batch construction.

3.  Detection Model – YOLOv9s
• Used lightweight YOLOv9-small model for 

fast and efficient anatomical landmark 
detection.

• Trained under multiple setups: baseline, 
data augmentations, CAS, and CAS + 
synthetic data (T2ID-CAS).

All experiments were conducted on an NVIDIA 
H100 GPU with 81GB memory.
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• T2ID-CAS mitigates class imbalance using 
SDXL-generated images and CAS.

• It achieved over 22% accuracy gain, specially 
for tracheal rings and vocal folds.

• It has the potential to enhance the precision 
and safety in ultrasound-guided airway 
management.

• In the future, we plan to test on larger 
datasets and explore text prompt optimization 
for improved synthetic image generation.

Model Class FID ↓ IS ↑ CLIP 
Score ↑

SD v1-4 Vocal 
Fold

9.55 17.13 26.31
SDXL-LoRA 5.54 17.62 29.81
SD v1-4 Tracheal 

Ring
18.12 11.04 28.66

SDXL-LoRA 16.11 18.18 30.40

Strategy Overall Tracheal
Ring Vocal Fold

Baseline 66.0% 38.5% 75.6%
Mosaic + Mixup 66.5% 36.9% 74.2%
Repeat Factor 
Sampling (RFS) 65.7% 37.1% 74.9%

Class-Aware 
Sampling (CAS) 84.3% 63.4% 95.0%

Baseline + SDXL 75.2% 82.1% 94.6%
RFS + SDXL 74.9% 81.0% 94.7%
T2ID-CAS 
(Ours) 88.2% 90.5% 98.2%

A.    Image Generation (SDXL)

B.    Object Detection
Table 2: Performance metrics of different strategies 

evaluated on YOLOv9s

Table 1: Evaluation of the synthetic images

Fig. 3: Comparison between original images and 
synthetic images by SDXL. The synthetic images 

show close resemblance to the ground truth ones.


