UNIVERSITY OF CENTRAL FLORIDA

Viability of Pleurotus ostreatus Growth in Microgravity Student Spaceflight Experiments Program (SSEP) Mission 21 – University of Central Florida Rosen College of Hospitality Management

Faculty Advisors: Dr. Phil Metzger, Dr. Olga Figueroa-Miranda Student/AdvisoryTeam: Carolyn Conrad, Sammi Jones, Reese Laushot, Brandon Leon

Background

Fungi are useful for research because they adapt easily and need little care. The oyster mushroom, *Pleurotus ostreatus*, can turn plant waste into energy and grow on simple materials. Studying it in space helps scientists see how gravity affects growth and structure, offering insight into how living systems behave in microgravity.

Significance

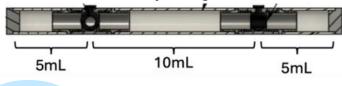
If *P. ostreatus* can grow in space, it could help provide food and recycle waste on long missions. This research supports future space farming and sustainable life-support systems while simultaneously deepening our understanding of how organisms adapt without gravity.

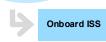
Research Question:

Can *P. ostreatus* grow and develop viable mycelial structures under microgravity conditions aboard the International Space Station (ISS)?

Methods

Tube Type: MixStix (3 chambers, 2 clamps; volume ~20 mL)


Valve 1: 1 mL sawdust slurry


Valve 2: 0.2mL malt extract broth, 5mL mycelium agar slurry, mixed

Valve 3: 5 mL of diluted ethanol solution (20 %)

valve 6. 5 m2 of dilated ethanol solution (20 70)	
Allowed In teraction Day	Proposed Crew Interactions and Modifiers
A=0	Open valve 1 – shake gently for 60 seconds
A+2	N/A
U-14	N/A
U-5	N/A
U-2	Open valve 2 – shake gently for 30 seconds

Rhodium Fluid Experiment Tube (RhFET-01) Mini-Laboratory Configuration

Load each

RhFET-01 Valve

Post-descent

analysis of

RhFET-01 Timeline and Interactions

Expected Outcome and Analysis

The ethanol content involved in this experiment intends to yield a non-toxic, low-strength growth inhibitor, 'fixing' the *P. ostreatus*. With this fix, post-descent analysis of the samples will be conducted using a standard light microscope and staining techniques to examine differences between the specimens.

The main components that will be analyzed are their growth patterns and overall ability to thrive given the microgravitional conditions.

Conclusion

P. ostreatus has the potential to grow in microgravitational conditions in space. The usage of ethanol intends to 'fix' the results on its descent back to Earth for analysis of its progression in space. In doing so, results could aid in further research for food supply in sustainable space applications.

References

Oluwafemi, Funmilola & Akpu, Stanley & Akomolafe, Christiana & Billyok, Bityong & Okhuelegbe, O & Doherty, Kemi & Olubiyi, Ropo & Adeleke, Oluwafemi & Oluwafemi, Lekan & A.O., Agboola. (2021). Microgravity-simulation of plant growth and its implications to the Sustainable Development Goals. 17. 19-33.

Moore, David. (1991). Mushrooms in Microgravity - Mycology at the Final Frontier. Mycologist. 5. 11–18. 10.1016/S0269-915X(09)80326-1.

Sekara, S. et al. (2025). Pleurotus ostreatus Mycelium Enriched with Silver Nanoparticles for Use in a Lunar Environment Simulation Laboratory. In: Lupa, M., Uhl, T., Staszel, J., Pargiela, K., Malczewska, A. (eds.) Selected Proceedings of the 7th Space Resources Conference. SRC 2024. Springer Aerospace Technology. Springer, Cham.

Woesten, H. A. B., Krijgsheld, P., Montalti, M., Lakk, H. (2018). Growing Fungi Structures in Space. European Space Agency, the Advanced Concepts Team, Ariadna Final Report 16-6101

Hamza, A., Mandari, V., & Santhosh Kumar, D. (2023). Efficient production of biomass and exopolysaccharide from P. ostreatus and physic-chemical characterization of blomass powder. *Food Biosclence*, 5, 5, 103073.

Acknowledgments

We gratefully acknowledge:

- •Dr. Phil Metzger and Dr. Olga Figueroa-Miranda Faculty Advisors
- •Rhodium Scientific and NCESSE for enabling SSEP Mission 21 participation
- •UCF Rosen College of Hospitality Management for laboratory resources and mentorship
- •Special thanks to the Student Spaceflight Experiments Program (SSEP), the National Center for Earth and Space Science Education (NCESSE).