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Hypothesized extraterrestrial technological intelligences have 
been theorized to construct large structures orbiting their host 
star. These structures may be detected using their transit light 
curves. In this research, we trained a deep neural network on 
epoch photometries queried from GAIA Dr3 and synthetic light 
curves simulated for these various theorized transiting 
geometries. Our completed model learns this data up to 88 
percent training accuracy, and can be applied to future 
astrometric surveys, such as the Roman Telescope or Magellan. 

BACKGROUND

ABSTRACT DATA

➢ All observable systems emit a measurable luminosity from 
their host star which can be fitted to a flux value: 

➢ This flux can be measured using photometry. When any 
object passes in front of the star, it blocks out a small 
portion of light: 

➢ The silhouette of the transiting satellite varies depending on 
its orientation in orbit with respect to the observer:

➢ This helps us turn our change in area into a function of time:

➢ This is how we derive distinct light curves through the transit 
method, observing the change in flux measured:

➢ Most notable transiting bodies are either exoplanets or 
moons of gas giants, whose geometries are mainly spherical. 
This keeps their flux “dips” relatively constant. 

➢ What happens to that dip when a large, unnatural structure, 
that could only be constructed by an advanced civilization, 
orbits their system’s star? 

➢ For this, we test three proposed classes of kilostructures:
○ The O’Neill Cylinder: A habitat proposed by Gerard K. 

O’Neill in a 1974 of Physics Today [2]
○ The Stanford Torus: A habitat proposed in a NASA design 

study in 1975 [3] 
○ The tidally locked pyramid: A structure published by Luc F. 

A. Arnold in the Astrophysics Journal in 2005

Using equation (5) and fixed orientations, we simulate the light 
curves of our chosen transiting kilostructures as shown:

 Figure 1: Geometries & Light Curves of Tested Kilostructures Compared to Natural, Spherical Geometries

To bury our synthetic light curves amidst enough real, 
comparative sources, we draw our real epoch photometries 
from GAIA’s data release 3. [1] Our sourcing range is a series 
of 16 connected box queries, each 2.5 degrees across, 
centered around Sagittarius A*, as shown in figure 2 below.

Figure 2: (left) Hand-drawn query range centered at Sagittarius A* with approximate ICRS mapping

Figure 3: (right) Sample epoch photometry of Gaia Dr3 Source ID 4109740749689569024

This provides us with a bright, well defined, dense stellar 
population. ADQL conditionals are used to return the desired 
parameters and remove contaminants such as binary stars and 
quasars. Each returned source ID allows us to query epoch 
photometries for our resulting 11,103 stars with observable 
transiting bodies. A sample epoch photometry for the star of 
source ID [number] is shown in figure 3 above. 

METHODS
Our deep neural network operates through a dataloader, 
convolution, activation & vector heads. The dataloader applies 
a chromatic jitter to the synthetic positives, generating enough 
positives to imbed amongst the 11,103 negatives. The 
architecture is represented in figure 6 in the results section.

While leaving room for further development, our model 
successfully predicted and classified the tested kilostructures 
with 88% training accuracy. We intend to use this classifier to 
search for transits of interest in future surveys. Moving 
forward, this work can guide other astrophysicists with 
interests in deep learning, and provide a foundation for other 
CNNs working with transit photometry.
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Figure 4: Neural Network Architecture Dimensionalized into LeNet to FCNN Format

The accuracy and loss curves for the optimized model are 
shown in figures 5 and 6, respectively: 

Figure 5: (left) Training, Validation, & Macro Metric Accuracy Curves across 34 Epochs of Training

Figure 6: (right) Training & Validation Loss Curves across 34 Epochs of Training

These results indicate slight overfitting, but within acceptable 
range for a dataset as abundant as ours. This was reduced as 
much as possible by intentionally sabotaging the learning rate 
to generate high volatility, tuning as needed, and then adding 
macro metrics to stop the model from rewarding itself too 
heavily for correctly classifying the non-kilostructure sources. 
The volatility was then corrected by decreasing momentum and 
adding plot smoothening, then final hyperparameter tuning. 

RESULTS


