

Fluid Flows Beyond Earth: How fluid dynamics research shapes Space Exploration and Colonization

Computational Fluids and Aerodynamics Laboratory (CFAL)

Space-Related Research

- Computational Fluid Dynamics: development to application
 - Algorithms, CPU/GPU/Quantum(?)/ML/AI, etc.
- Aerodynamics / Fluid dynamics: all-Mach
- Multiphase flow systems: Solid/Liquid/Gas mixtures
 - Regolith, sloshing, cavitation, boiling, cryogenics

Michael P. Kinzel, Ph.D. Associate Professor Aerospace Engineering michael.kinzel@erau.edu

Jackson Asiatico (PhD candidate) Space-Exploration Rotorcraft

Taylor Peterson (PhD candidate) Cislunar Fluid Transfer

Sweety Sarkar (PhD student)
Atmospheric
Modeling

Brendon Cavianolo, Ph.D. Postdoc working on hypersonics and atmospheric simulation

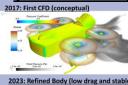
Caroline
Anderson, Ph.D.
Postdoc working
on re-entry
vehicle design

Michael
Marques, Ph.D.
Postdoc working
on Dust-Kickup
relating to Space
Exploration

Andy Torres (MS, PhD student) Atmosphere in Celestial Bodies

Juan Pablo Roldan (MS, PhD student) Multiphase processes in Hypersonics

Sagar Gharti (MS, PhD student) Biofluids in Microgravity



CFAL Contributions to the Dragonfly Mission: Aerodynamics, Stability, and Dust Dynamics

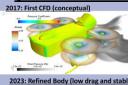
Dragonfly Mission to Titan

- 1st flight-based lander
 - KSC launch: July 2028
- Contributions:

(2017-2023) Fuselage aerodynamics

(2021-2023) EDL control issue and initial correction (2022) Flight control issue: Yaw Stability and corrected design (2023-2025) Dust! (video)

- Erosive Damage
- Dust sensor design/calibration
 Collaboration with Brisset (UCF)

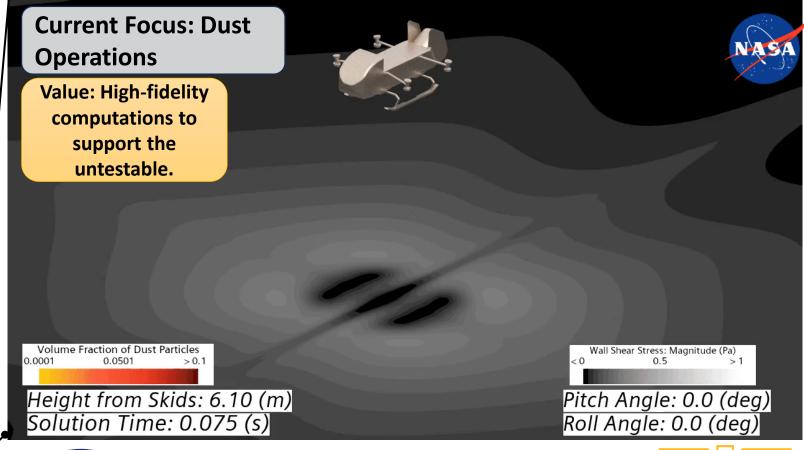




Dragonfly Mission to Titan

- 1st flight-based lander
 - KSC launch: July 2028
- Contributions:

(2017-2023) Fuselage aerodynamics


Aerodynamic Design: Many CFAL Contributions

- Improved flight dynamics
- Lower drag

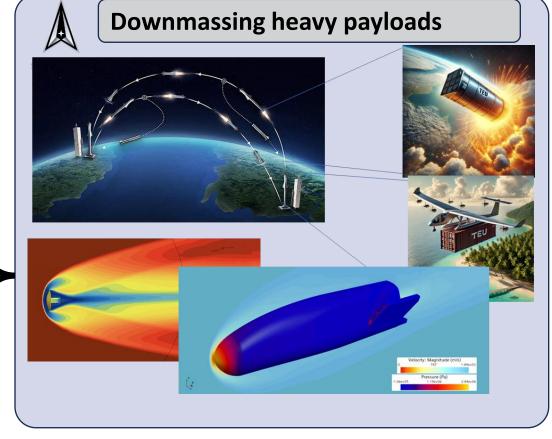
(2021-2023) EDL control issue and initial correction
(2022) Flight control issue: Yaw Stability and corrected design
(2023-2025) DUST! (video)

- Erosive Damage
- Dust sensor design/calibration
 Collaboration with Brisset (UCF)

CFAL Contributions to the Dragonfly Mission: Aerodynamics, Stability, and Dust Dynamics

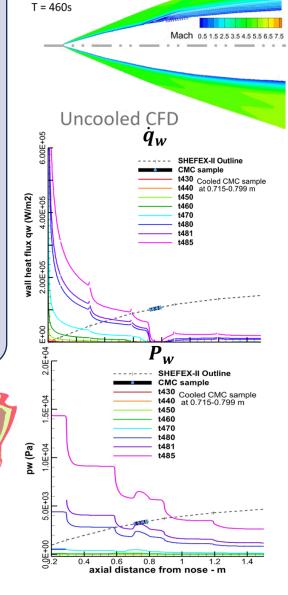
Experience in Univ and Space Mission Design: Offline happy to discuss pros and cons of space mission design integrating university/industry/etc.

Launch/Re-Entry Vehicle: TPS/Vehicle Design/Analysis


0.5 0.4 0.3 0.2

Up/Down-massing Space

Goal: Low cost access to space!


Approach: From launch processes, to returning things from space.

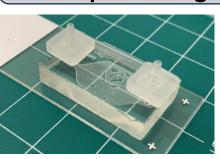
- Space Logistics Systems Design
 - Gound operations
 - Ravelo and Mollaghasemi (UCF)
 - Reentry
 - Elgohary (UCF)
 - Coastal Resilience
 - Medeiros (ERAU)
 - Reentry
- Reusable heat Shields
 - Transpiration Cooling
 - Brune (NASA Langley)
- Cislunar fuel transport
 - Boiling/Processing/Sensing
 - Hartwig (NASA Glenn)

Cooling Extended

to Capsules

Hypersonic Cooling

Cooled CFD


Fluids in Space: From Bioflow Physics to Thruster Interactions

Fluids in Space Environment

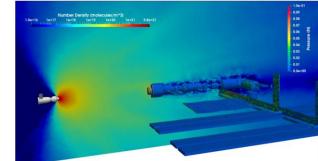
Goal: Solve issues in space. **Approach:** Apply range of CFD methods to solve challenges.

- Biofluids (Coathup & Seal, UCF)
 - TRL advancement
 - Microgravity effects on flows within bone pores
 - 2 Suborbital Flights:
 - NS23 and 24
- In-Space Manufacturing (Raghavan, ERAU)
 - Curing physics in micro/lunar-gravity
 - μG Flight planning
- Thruster-Plume interactions
 - Thruster-Satellite Damage (Pitt, Aegis)
 - Thruster-regolith interaction

Micro-fluidic Experiment Representing Bone Flows

imec USA Lens-Free Imaging (LFI)

个 TRL for Space


Thruster Plumes: Ground/Satellite

Rarefied Plume Simulation

Conclusions

- Advancing fluids research to enable space exploration and human settlement.
- Merging CFD, AI, and experimental methods for rapid TRL advancement.
- Thrilled to collaborate across missions, labs, and universities—this is a shared frontier.
- Contact: kinzelm@erau.edu

Florida Space Research: Where scientists, engineers, and medicine converge—turning problems into collective progress.