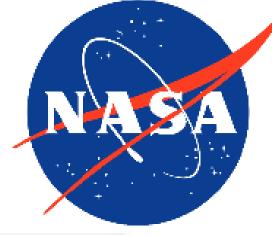
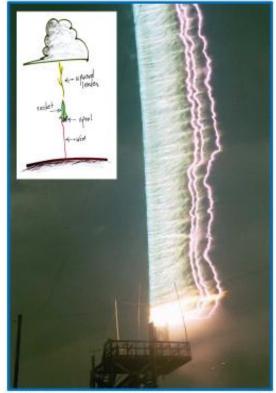
Partnering with NASA: Florida Tech's Impact



G-Lat: 28.1 N G-Long: 80.6 W Hamid K. Rassoul, Space Plasma Physicist Chief Research Officer, Florida Tech

2nd SpaceU Symposium, UCF – November 7, 2025



... about the presenter

Lightning when and where you want it! UF/FIT ICLRT facility -- Camp Blanding, FL

Prof. Hamid K. Rassoul

Professor of Aerospace, Physics & Space Sciences American Physical Society & American Geophysical Union (Emeritus Member)

- Career Highlights
 - NASA staff Engineer/Researcher (MSFC)
 - · FMR. Department Physics Head & Dean of Science
 - · Distinguished University Professor
- Regular Courses
 - · Geophysics (UG) & Planetary Interiors (G)
 - · Physics of Atmosphere (UG) & Planetary Atmospheres (G)
 - Electromagnetic Theory (UG & G)
 - Classical Mechanics (UG & G)
- · Research Interests
 - Lightning & EMPS initiation, propagation, and attachment
 - · Cosmic rays Interplanetary propagation modulations
 - Space Weather ionospheric dynamics; magnetic storms and substorms
 - Space Instrumentation Particle, Field, and Radiation sensors

"Captain Lightning

Scientific Journey

Jupiter: Voyager Missions

 \downarrow

Mars: Viking Mission

 \downarrow

Magnetosphere: IMP-8, AE & DE

Missions

 \downarrow

Ionosphere: AE & DE, Atlas

Missions

 \downarrow

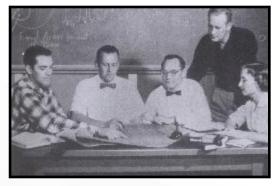
Troposphere: GOES, ASIM, GLM

Missions

 \downarrow

Geophysics?

- **Distinguished University Professor** of Physics & Space Science (since 2010)
- Interim Provost (2023)
- Chief Research Officer (since 2024)


... about Florida Tech (FIT)

Florida Institute of Technology: Legacy in Space Education and Innovation (academic home of 7 astronauts)

- Founded in 1958 to support Cape Canaveral's space program
- Located near KSC (35 miles); strategic NASA partner
- Faculty and alumni contributed to Apollo, Space Shuttle, and

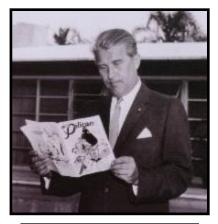
Artemis missions

- Focus on planetary exploration, astrophysics, robotics, astronaut & rocket/payload safety, and commercialization
- Committed to advancing space research, education, and technology

Founded to Support the U.S. Space Program

... a young university 1958-2025 (67 years)

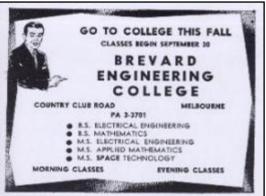
- **BEC** (1958) → **FIT** or **FL Tech** (1966)
- Countdown College ... 3, 2, 1 ... lift off! The nickname is attributed to Dr. Wernher von Braun, because many of its first students were 'missilemen' (engineers/technicians)
- Nation's Oldest UG Space Science Program
- FIT: A legacy interwoven with NASA, built through challenges and sacrifice.
 - Dream of a senior missileman out off a 37-cents as his first endowment – Dr. Jerome P. Keuper
 - Upheld by the altruism of an African-American missileman – Mr. Julius Marvin Montgomery

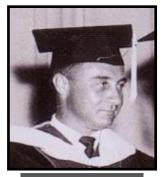


JEROME P. KEUPER (1921-2002)

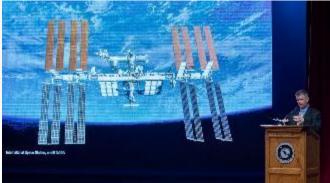
Nuclear Physicist

- B.S. MIT
- M.S. Stanford
- Ph.D. University of Virginia
- Senior Engineer RCA Systems
 Analysis, Missile Test Project
- **■** FIT President 1958-1986




Wernher von Braun

"Gus" Grissom


Edward Teller

Space & Defense - Our DNA

- Colleges: Engineering & Science, Aeronautics, Applied Psychology & Liberal Arts, and Business (Management, Data Science, Innovation)
- Programs: 185 undergraduate, 85 master's, and 25 doctoral programs
- Enrollment: 10,000+ (On campus: ~ 5,000; Online: ~ 5000) -- 46% M, 54% F
- Alumni: Over 70,000 worldwide
- Research Portfolio: \$79M open contracts
 \$21M annual expenditure
 500 pubs/yr
 - 170 tenured-stream faculty 14:1 Stu–Fac Ratio
- Federal Sponsors: DoD, NASA, NSF, NIH, and DOE

Sunita Williams, NASA, U.S. Navy Captain

Mike Moses - President Virgin Galactic

Winston Scott, FMR Astronaut, Prof//Dean,

Dr. Nicklow and USSF General Tim Sejba

Drs. Nicklow and FMR NASA Administrator Nelson

Florida Tech- "Space & Defense Heritage"

Applied Research & Comprehensive Training (Learning by Doing)

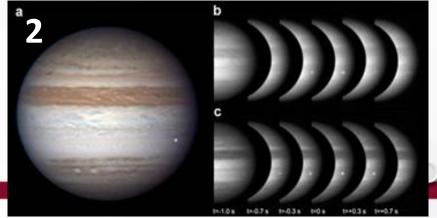
- Aeronautics, Space, and Applied Electromagnetics
- Cybersecurity & Cyber Resiliency
- Ocean & Marine Engineering and Science
- Biomedical Engineering and Science
- Applied Social Sciences and Managements

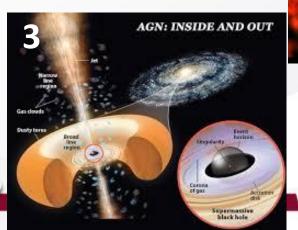
Interested in our research or looking to collaborate? Reach out anytime at rassoul@fit.edu. I'll gladly connect you with the right project leaders.

Science, Engineering, and Technology in Action: Florida Tech's NASA Projects

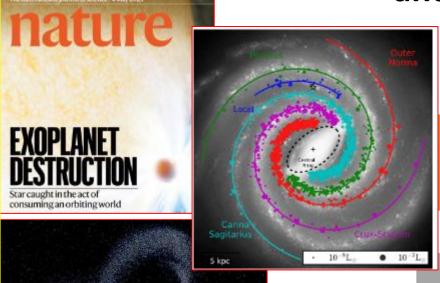
Highlighting Some NASA Research Projects at Florida Tech Science, Engineering, and Technology in Action


- 1. Space Science & Exploration
- 2. Space Biology
- 3. Earth & Environmental Sciences
- 4. Technology & Engineering Innovations
- 5. Human Systems & Life Sciences
- 6. Education, Workforce, & Outreach




(1) Space Science & Exploration: Planetary science, Astrophysics, Heliophysics

- 1. Milky Way's structure and evolution
- **Exoplanet Atmospheres**
- Dynamics of Jupiter's Atmosphere & Meteoroid Impacts
- 4. Supermassive black hole & AGN jets
- Solar Wind: Alfvénic and MHD Turbulence
- Cosmic Rays Physics: Galactic (supernova), Solar (flare &
 CME), Extragalactic (quasars & black holes) sources



Example-1: Multi-wavelength Research in Galactic Stellar populations and Exoplanetary Astrophysics

• Research combines stellar dynamics, variable star astrophysics, and planetary science to explore the Milky Way's structure and evolution.

• Sagittarius Stream Mapping: Using Gaia data to characterize diskembedded stars and constrain **Galactic disk populations** vs stream stars.

• Variable Star Research (NASA FINESST Award) focuses on pulsating stars via ZTF-Gaia data supporting NASA's time-domain astrophysics goals.

OPEN ACCESS

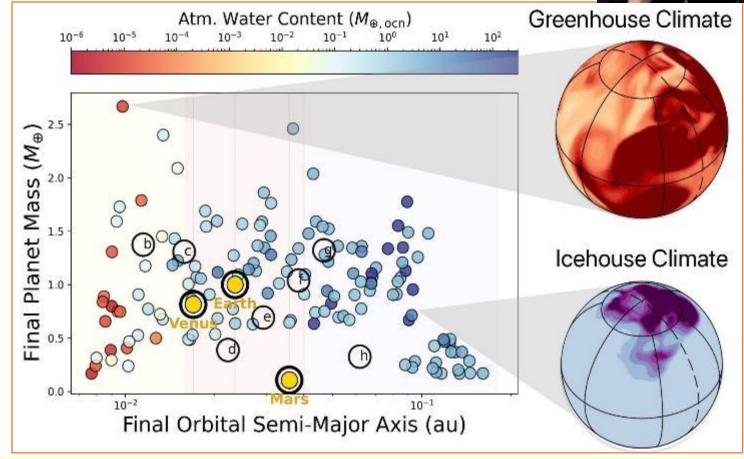
Potential for Life to Exist and be Detected on Earthlike Planets Orbiting White Dwarfs

THE ASTROPHYSICAL JOURNAL LETTERS

Caldon T. Whyte, L. H. Quiroga-Nuñez, Manasvi Lingam, and Paola Pinilla Published 2024 December 12 • © 2024, The Author(s), Published by the American

The Astrophysical Journal Letters, Volume 977, Number 2

IOPscience



• Exoplanetary Science that explores habitability around white dwarfs; published in The Astrophysical Journal Letters.

Example-2: Born Dry or Born Wet? Exploring whether rocky planets in compact systems obtain substantial water inventories

- Planet Formation & Evolution -linking random accretion histories to full climate and atmospheric chemistry models (ongoing)
- Supported by CHAMP initiative (Consortium on Habitability and Atmospheres of M-dwarf Planets) supported by APL-JHU & NASA)
- Parts of published results was reported by CNN in a JWST new piece on September 28th

Dr. Howard Chen; named one of 25 "Rising Stars in Astronomy" by the Astronomy Magazine in 2023

(2) Space Biology: Science of Life in Space

Plant physiology and space biology focusing on plant tropisms.

- Investigates gravitropism and phototropism responses in plants to gravity and light in space.
- Nine spaceflight projects studying plant adaptation to microgravity and low gravity (Moon & Mars).

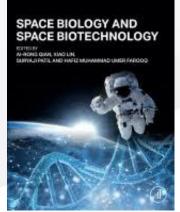
Dr. John Z. Kiss and team

Dr. Drew Palmer

Quorum Sensing in Algae

Research on Chlamydomonas algae reveals how cell density affects swim speed and signaling molecules.

Perchlorate Removal on Mars

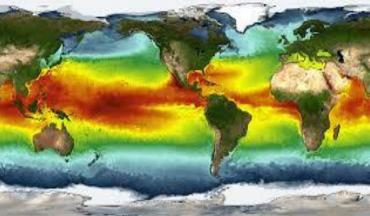

Microbial consortia detoxify toxic perchlorate salts in Martian soil to support crop growth.

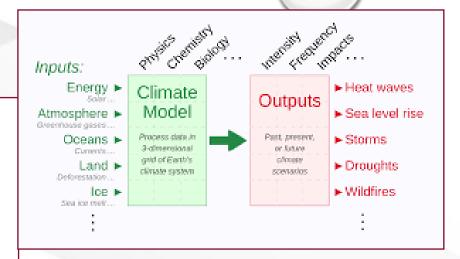
Cyanobacteria for Nutrient Fixation

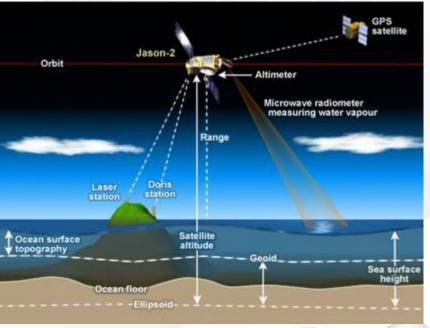
Anabaena cyanobacteria fix nitrogen and bioleach nutrients to improve growth in extraterrestrial soils.

Space Plant Growth -Bacteria

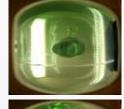
Bacteria from ISS
Veggie unit promote
plant growth under
microgravity by
producing hormones
and nutrients.






(3) Earth & Environmental Sciences

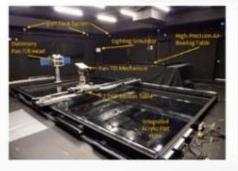
- 1. Climate modeling, Earth observation, and remote sensing
- Atmospheric studies (**TGFs, TLEs, Sprites halos, Nox,** etc.) using NASA satellite data (e.g., **GLM, TEMPO, ISS-LIS**)
- Oceanic studies (sea level rise, sea surface temperature for marine heatwaves and coral bleaching, tracking ocean currents for El Niño events, ocean color data to locate algal blooms & plankton distributions, etc.) using NASA satellite data (e.g., Sentinel-6 and Jason series, Aqua, ICESat-2)

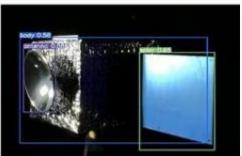



(4) Technology & Engineering Innovations at the Edge of Space

Propulsion Lab – Rocket Science

- Cryogenic fuel behavior in zero-gravity and thermal conditions
- Simulations for rocket propellant stratification and tank design





NETS Lab: Autonomous Spacecraft Vision Systems

- Al-driven vision systems for on-orbit object tracking
- Supports autonomous operations near non-cooperative satellites
- Deep learning used for component recognition & navigation

Oxygen from Moon Rocks — ILMENOX Project

- NASA-funded international collaboration to extract oxygen from lunar regolith
- Partners with KSC, British Titanium, and University of Cambridge
- Uses FFC Cambridge Process molten salt electrochemical reduction

Other Examples of Technology & Engineering Innovations – Cont.

- Application of Machine Learning and Advanced Additive Manufacturing in novel ways to support rocket, satellite, and spacecraft applications (Rendezvous, Proximity Operations, Docking, and Slosh experiment)
- Integrated quantum technologies to advance frontiers in science and technology in material science
- Deep Learning for Autonomous Space Operations: inorbit servicing and space debris-capture missions
- Creating and Guiding Lightning discharges as Illuminator,
 Passive OTH Radar, Object tracking & Threat detection

Example-1: Adaptive Control for Smarter, Longer-Living Satellites

Dr. Riano-Rios

The Problem

- Reaction Wheels (RW) are the most used actuators for precise pointing control in satellites.
- Prone to degradation/failure due to harsh conditions in space.

Current Status

We advanced from computer simulations to real-time Hardware-in-the-Loop (HIL) testing to prove the system can run directly onboard.

[3] M. Sakal, G. Nehma, C. Riano-Rios, and M. Tiwari, "Real-Time Testing of Satellite Attitude Control with A Reaction Wheel Hardware-In-the-Loop Platform," 2025 AAS/AIAA Astrodynamics Specialist Conference, Boston, MA, 2025.

Our Approach

We are developing adaptive controllers that simultaneously control the satellite orientation and estimate the health of actuators.

[1] C. Riano-Rios, G. Nehma, and M. Tiwari, "Adaptive controller for simultaneous spacecraft attitude tracking and reaction wheel fault detection," in AAS/AIAA Astrodynamics Specialist Conference, Broomfield, CO, 2024.

[2] M. Sakal, G. Nehma, C. Riano-Rios, and M. Tiwari, "RBFNN-based Adaptive Attitude Controller with Reaction Wheel Health Estimation," 2025 AAS/AIAA Astrodynamics Specialist Conference, Boston, MA. 2025.

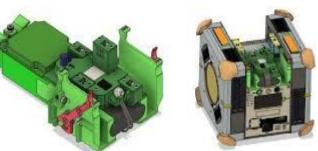
Next Steps

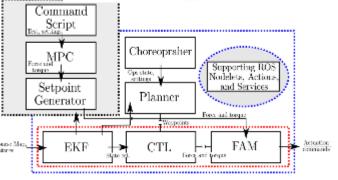
Full-Scale Ground Test: Pushing Our Adaptive Controllers to the Limit:

Moving forward to a complete on-ground test on a state-of-the-art attitude simulation testbed, bringing us closer to flight-ready

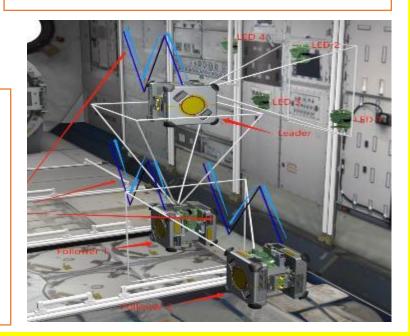
Prototype

Integration


Example-2: Vision-Based Navigation for Formation Flight on ISS SVGS-1&2: Smart Video Guidance Sensor for Astrobee localization


- SVGS defines a coordinate system attached to NavCam (SVGS-1 flew
- SVGS measurements fused with Astrobee localization pipeline
- MLP can send force/torque commands as needed to achieve tracking
- → robust formation flight of multiple
 Astrobees independent of localization

free flying robot platform


■ GNC Subsystem (MATLAB to ROS/C-

Software Update CONOPS

- Deploy ROS package to enhance Astrobee localization suite at MLP level
- Package interfaces with robot EKF, IMU propagator and cameras (modified Astrobee workspace)
- Changes in localization and FAM needed for integration
- Setup: upload source code to MLP + build through remote access (ssh/adb)

Three-robot formation flight maneuver

- 4 SVGS beacons
- 3 Astrobee robots
- Maneuver time: 10 min

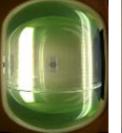
Example-3: Space Vehicle Propellant Management and Control

State-of-the-art analytical, numerical and experimental tools to support basic and applied research in:

- Space vehicle systems
- Propulsion, Fluids, Thermodynamics
- Combustion, Acoustics, and Controls

Unique facilities to simulate propellant dynamics (sloshing) and control system response to enhance mission assuredness

1/5 scale upper-stage LH2 and LOX tanks under test at ASAP Lab


Dr. Daniel Kirk
Dir. of ASAP (Aerospace
Systems And Propulsion)
Laboratory

Acquisition of **long-duration micro-gravity propellant** data on **International Space Station** used for model validation for rockets, spacecraft, and in-space assets

SPHERES Slosh Experiment on ISS

Micro-gravity fluid dynamics

(5) Human Systems & Life Sciences

- ATLAS La Dad Advancing Technology-interaction & Learning in Aviation Systems
- Bioastronautics: Research on astronaut health and radiation effects
- PEGASAS
- Optimizing Human Behavior: Supporting psychological wellbeing, social interaction, and productivity through behavioral science

 IPEx Mission Control: Enhancing Mission Control through HSI (Human Systems Integration) for Next-Gen IPEx (ISRU Pilot Excavator.

(6) Education, Workforce, & Outreach

Broader Impact: Expanding science to the community, building technical skills, and strengthening Florida Tech's STEM leadership.

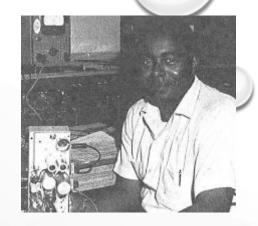
Telescope Restoration: Florida Tech's 32-inch telescope refurbished as a hands-on engineering project (optics, dome, controls).

KSCVC Partnership: Includes the portable observatory built to track asteroids, used for outreach and for undergraduate and graduate training.

Educational Outreach: K–12 school visits, community nights, and tactile astronomy.

SSEP (Student Spaceflight Experiments Program): 4 student designed hands-on experiments, with one experiment set to fly to the ISS in Spring 2026 and another in 2027.

Mentorship Pipeline: Larsen Motorsports + NASA HUNCH: Students gain hands-on STEM experience by building real NASA hardware through welding, machining, and fabrication.



In Closing

- At **Florida Tech**, we are driven by curiosity, collaboration, and the pursuit of discovery.
- We welcome all colleagues who share our passion to push the boundaries of knowledge and technology.
- Together, we strive to inspire and empower the next generation of STEM leaders through research, innovation, and mentorship.
- This talk is dedicated to **Mr. Julius Montgomery**, whose *vision* and *sacrifice* ensured that Florida Tech not only survived, but continues to **grow**, **thrive**, **and shape the future**.

Thank you.

Julius Montgomery at work as a "Range Rat." The Range Rats repaired the electronics in malfunctioning ballistic missiles. USAF/AMR Cape Canaveral.

